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Abstract. The conventional sources of climate data are observation data from weather stations. However, there are a number of derived 
datasets with varying reliability that can be considered as alternative data sources especially for areas observational data are available or 
sparsely distributed.  Among the several datasets, the two most commonly used derived datasets are Climate Research Units (CRU) and Global 
Precipitation Climatology Centre (GPCC). The purpose of this study was to compare the performance of two gridded global datasets (GPCC- 
Total Full V2018 and (CRU) Ts version 4.01) in simulating observed rainfall data from 10 selected weather stations in the Awash River Basin, 
Ethiopia.The performance of the GPCC and CRU datasets were evaluated by comparing the monthly rainfall data extracted from the two 
datasets with observation data (for period 1960- 2016) from the weather stations using statistical and graphical methods. Pearson correlation 
coefficient (CC), root mean square error (RMSE), scatter plots, box plots, Taylor diagram, and Kolmogorov-Smirnov test were used. Prior to 
using the gauge data for evaluation, the data were tested for temporal homogeneity using the standard normal homogeneity test (SNHT), the 
Buishand range test, and the Pettitt test. It was found the GPCC dataset showed generally higher correlations with gauge data (CC=0.85 for 
monthly time series) and lower errors (with averaged RMSE=45 mm/month) than that of the CRU dataset (CC=0.82 for monthly time series, 
with averaged RMSE over location =51 mm/mm). However, it was found that majority of the monthly rainfall data from both the CRU and 
GPCC datasets (71.2% for the CRU and 66% for the GPCC) failed to follow probability distribution with observation data.Still, it is clear that 
the GPCC dataset showed similar probability distribution with observed data for more number of time series than that of the CRU dataset. All 
graphical analysis also showed that GPCC dataset aligns more closely with gauge data than of the CRU. Overall, the GPCC dataset has showed 
better performance than the CRU dataset to simulate rainfall for the Awash River Basin. Relative to the CRU dataset, the GPCC dataset reduces 
the RMSE by an average of ~11% for monthly rainfall and by ~13.4% for annual rainfall in the Awash River basin. The GPCC dataset can be 
used as an alternative source of rainfall data for hydrological analysis and modelling required in the planning and design of water infrastructure, 
management of water resources, and climate and hydrological studies in the basin, especially for ungauged and data-scarce areas of the river 
basin. Further studies are crucial to identify datasets that can perform betteracross locations and seasons in reducing errors and bias and in 
replicating the probability distribution of observation data.  
Key words: Rainfall (CRU, GPCC, CC), Statistical and graphical methods (SNHT, RMSE, CC), Taylor diagram, Kolmogorov-Smirnov test, 
performance, Awash River Basin (Ethiopia).
Résume. Les sources conventionnelles de données climatiques sont les données d’observation provenant des stations météorologiques. 
Cependant, il existe un certain nombre de jeux de données dérivés de fiabilité variable qui peuvent être considérés comme des sources de 
données alternatives, en particulier pour les zones où les données d’observation sont disponibles ou peu distribuées. Parmi les nombreux 
ensembles de données, les deux ensembles de données dérivés les plus couramment utilisés sont les Climate Research Units (CRU) et le Global 
Precipitation Climatology Centre (GPCC). Le but de cette étude était de comparer la performance de deux ensembles de données mondiales en 
grille (GPCC- Total Full V2018 et (CRU) Ts version 4.01) dans la simulation des données de précipitations observées provenant de 10 stations 
météorologiques sélectionnées dans le bassin de la rivière Awash, en Éthiopie. La performance des ensembles de données GPCC et CRU a 
été évaluée en comparant les données mensuelles de précipitations extraites des deux ensembles de données avec les données d’observation 
(pour la période 1960-2016) des stations météorologiques en utilisant des méthodes statistiques et graphiques. Le coefficient de corrélation 
de Pearson (CC), l’erreur quadratique moyenne (RMSE), les nuages de points, les diagrammes en boîte, le diagramme de Taylor et le test de 
Kolmogorov-Smirnov ont été utilisés. Avant d’utiliser les données de jauge pour l’évaluation, les données ont été testées pour l’homogénéité 
temporelle en utilisant le test d’homogénéité normale standard (SNHT), le test de portée de Buishand et le test de Pettitt. Il a été constaté 
que l’ensemble de données GPCC montrait généralement des corrélations plus élevées avec les données de jauge (CC=0,85 pour les séries 
temporelles mensuelles) et des erreurs plus faibles (avec une RMSE moyenne = 45 mm/mois) que l’ensemble de données CRU (CC=0,82 pour 
les séries temporelles mensuelles, avec une RMSE moyenne par emplacement = 51 mm/mois). Cependant, il a été constaté que la majorité des 
données mensuelles de précipitations des ensembles de données CRU et GPCC (71,2 % pour le CRU et 66 % pour le GPCC) ne suivaient pas 
la distribution de probabilité avec les données d’observation. Cependant, il est clair que le jeu de données GPCC a montré une distribution de 
probabilité similaire aux données observées pour un plus grand nombre de séries temporelles que le jeu de données CRU. Toutes les analyses 
graphique sont également montré que l’ensemble de données GPCC s’aligne plus étroitement avec les données de jauge que celui du CRU. 
Dans l’ensemble, le jeu de données GPCC a montré de meilleures performances que le jeu de données CRU pour simuler les précipitations 
dans le bassin de la rivière Awash. Par rapport au jeu de données CRU, le jeu de données GPCC réduit le RMSE en moyenne de ~11% pour les 
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INTRODUCTION
The conventional source of climate data are measurements 

from weather stations. However, obtaining reliable climate 
data from weather stations is not always easy for a number 
of reasons. Absent or sparsely distributed weather stations, 
lack of long-term data records from weathers stations, large 
missing data and inhomogeneity in data from weather stations 
are  some of the major reasons making it difficult to obtain of 
climate data from weather stations (Tsidu 2012, Dinku et al. 
2014, Ahmed et al. 2019, Van Vooren et al. 2019).

Ethiopia is among the countries with insufficient number 
of weather stations. There were about 910 weather stations in 
Ethiopia until recent times. New stations have added in recent 
years, currently there are about 1700 manned and automatic 
weather stations in Ethiopia (Ethiopian Meteorological 
Institute 2025). However, most of the weather stations are 
located in the central and western highland areas of the 
country. There is much smaller number of weather stations 
in the eastern low land areasof the country, which consists 
of most of the area of the Awash River basin. In addition, 
the weather stations in these areas are relatively new, 
making it difficult to get long year’s climate data.  Ethiopian 
Meteorological Institute has planned to increase the number 
of rainfall recording stations to 2589 until 2030 in order to 
meet the standard of world meteorological agency(National 
Meteorological Agency 2020).Together with this ongoing 
effort to meet the need, evaluating alternative data sources 
is crucial.

Alternative data sources have been explored for climate 
variables. Derived datasets are potential alternative data 
sources (Sun et al. 2018). Derived datasets include gauge-
based, satellite-related, reanalysis, and hybrids of these 
datasets. Among these derived datasets, gauge based derived 
datasets are widely used in climate studies (Merino et al. 2021). 
In Ethiopia, a number of studies used these datasets (Wagesho 
et al. 2013, Dinku et al. 2014, Asfaw et al. 2018, Mulugeta 
et al. 2019). Gauge- based datasets are directly derived from 
actual meteorological observations. Because of this they show 
superior performance relative to others especially for areas 
with having good distribution and coverage of high quality 
weather stations. For this reason, they are also considered as 
the primary source to validate other products such assatellite 
and reanalysis data. Gauge based derived datasets have relative 
advantages over other derived dataset in that they have inherited 
well defined errors and uncertainties from the observation data 
and interpolation methods.Several gauge-based datasets have 
been developed so far (Sun et al. 2018, Ahmed et al. 2019). 
However, the Global Precipitation Climatology Centre (GPCC) 
datasets, and the Climatic Research Unit (CRU) datasets 
are the most widely used (Hu et al. 2018, Sun et al. 2018). 
Global Precipitation Climatology Centre (GPCC) uses data 
from large number of weather station, each of the climatology 
product are based on data approximately from 85,000 weather 
stations.  The CRU datasets are developed by the University 
of East Anglia and comprise of data for a number of climate 

variables including rainfall. The CRU datasets are constructed 
based on monthly gauge data from National Meteorological 
Agencies (NMAs), the World meteorological organizations 
(WMO), the Centro Internacional de Agricultura Tropical, 
the Food and Agriculture Organization (FAO), and others. 
Data from around 4000 weather stations across the world 
are used for construction of the datasets.  While the GPCC is 
developed at DeutscherWetterdienst in collaboration with the 
World Meteorological Organization (WMO) based on daily 
and monthly data from National Meteorological Agencies 
(NMAs), the World meteorological organizations (WMO), the 
CRU, the Food and Agriculture Organization (FAO), and the 
National Centers for Environmental Information as well as 
from international regional projects. Data acquired from more 
than 85.000 stations across the world are used to construct the 
datasets (Hu et al. 2018. Sun et al. 2018). There are different 
versions of datasets available for both the CRU and the GPCC 
datasets.  Both datasets can provide high resolution (0.5x 0.5°) 
gridded global data for a period of more than 100 years. As the 
results, they are regularly used by climate scientists. They have 
been widely used in long-term climatic trend analysis and as 
“baseline” datasets for validations of other model outputs and 
satellite products (Hu et al. 2018, Sun et al. 2018, Ahmed et 
al. 2019). However, there are inherent biases and uncertainties 
in those datasetsassociated with density and coverage of the 
observation station, quality of observation data, amount of 
missing data, and the interpolation method used in building 
the datasets.Therefore, it is required to evaluate the reliability 
of datasets over a particular location.  

A number of studies have also evaluated the Performances 
of gridded datasets for locations inEthiopia and for the East 
African region.  Dinku et al. (2008) evaluated five gauge-based 
gridded products (three different products of GPCC, CRU, 
and CPC) against gauge data over the Ethiopian Highlands. 
They reporteda very good agreement between the datasets and 
gauge data. They also reported reasonably low systematic and 
random errors for the climate products.Woldemariam et al. 
(2017) evaluated four widely used reanalysis datasets (ERA-
Interim (The European Centre for Medium-Range Weather 
Forecasts (ECMWF) Re-Analysis, MERRA (Modern Era 
Retrospective-Analysis), NCEP-DOE R2 and CFSR) against 
on gauge data across Ethiopia. They found that the ERA-
Interim and CFSR perform better in showing the different 
characteristics of daily rainfall over Ethiopia. Gebrechorkos 
et al.(2018) evaluated five climate datasets from multiple data 
sources [Africa Rainfall Climatology version 2.0 (ARC2), 
Climate Hazards Group InfraRed Precipitation (CHIRP), 
CHIRP with Station data (CHIRPS), Observational-Reanalysis 
Hybrid (ORH), and regional climate models (RCMs)] against 
gauge data in east African region. They found that CHIRPS, 
CHIRP, and ARC2 showed best performance, while ORH, 
I-RCM, and RCMs showed the worst performance. Asfaw et 
al.(2018) evaluated two datasets (GPCC and CRU) against 
station data over the north central Ethiopia using correlation 
coefficient and Kolmogorov-Smirnov test .

précipitations mensuelles et de ~13,4% pour les précipitations annuelles dans le bassin de la rivière Awash. Le jeu de données GPCC peut être 
utilisé comme une source alternative de données de précipitations pour l’analyse hydrologique et la modélisation nécessaires à la planification 
et à la conception des infrastructures hydrauliques, à la gestion des ressources en eau, ainsi qu’aux études climatiques et hydrologiques dans 
le bassin, en particulier pour les zones non jaugées et pauvres en données du bassin fluvial. Des études supplémentaires sont cruciales pour 
identifier des ensembles de données qui peuvent mieux performer à travers les emplacements et les saisons en réduisant les erreurs et les biais 
et en reproduisant la distribution de probabilité des données d’observation.
Mots clés : Précipitations (CRU, GPCC), méthodes statistiques et graphiques (SNHT, RMSE, CC), diagramme de Taylor, test de Kolmogorov-
Smirnov, performance, Bassin de la rivière Awash (Éthiopie).
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They found that data from GPCC dataset showed higher 
correlation with gauge data than that from the CRU dataset. 
They found that the probability distribution GPCC data follow 
the same distribution with observed data, but that of the CRU 
do not follow the same distribution with observed data.

The studies cited above have different issues limiting the 
information generated from them to be less useful for the 
Awash River basin.  Dinku et al. (2008) evaluated the five 
gauge-based gridded products based ondata from large number 
of weather stations across Ethiopia.  This study was the first 
of its kind and provided crucial information on performance 
of the datasets. However, firstly, the study was carried out at 
national level, so, no particular empathize can be given to the 
Awash River basin. Secondly, the study did not compare the 
probability distribution of gridded dataset with the observation 
data.Thirdly, one of the most important statistical parameter, 
the root mean square error was not employed in the study. 
Lastly, the study is a bit older now, indicating that the recent 
version of the datasets might be needed to be evaluated. 
Woldemariam et al. (2017) and Gebrechorkos et al. (2018) 
did not include the CRU and GPCC in their study. In addition, 
both of these studies are carried out for national and regional 
geographical areas, lacking details for the basin of interest in 
our study, the Awash River basin.

On the other hand,  Asfaw et al. (2018) evaluated the 
GPCC and CRU over the Woleka sub-basin, in eastern part 
of the Abay River basin (which is not part of the Awash river 
basin). Asfaw et al. (2018) compared GPCC and CRU using 
correlation and correlation coefficient and Kolmogorov-
Smirnov test alone. Some important performance metrics 
such as statistical errors and bias are not included.  Therefore, 
it is important to evaluated performance of the recent version 
of GPCC and the CRU datasets at better level of detail and 
focus for the Awash River basin by employing a number of 
important statistical and graphical methods.  To this end, this 
research was initiated to compare the performance of two 
globally commonly used gauge based global gridded datasets, 
the Global Precipitation Climatology Centre (GPCC) and the 
Climate Research Unit (CRU), against observation data over 
the Awash River Basin. 

Description of the study area
Awash River Basin (ARB) is located in Ethiopia between 

7°53’ N to 12° N and 37°57’ E to 43°25’ E. It covers an area of 
116.374 square-km extending from the central highlands as high 
as 4195 m above mean sea level (M.S.L) to the lower arid areas 
as low as 210 m above M.S.L in the Danakil Depression. The 
basin is the most important basin in Ethiopia for the river in this 
basin isone of the most utilized river in Ethiopia. Thisriver is 
the source of water for most of the major cities, irrigated farms, 
and agro-industries of the country. The climate in the basin is 
characterized as humid subtropical at the upstream region, semi-
arid in the middle region, and arid at the downstream region of 
the River Basin. The land uses in the Basin include around 50% 
agricultural land, 39% grassland and shrubs, and the remaining 
11% under various uses (Awulachew et al. 2007, Kerim et al. 
2016). Traditionally, the Basin is divided as the Upper, the 
Middle, and the Lower Awash. However, hydrologically, the 
Basin is divided into seven sub-basins (Fig.1). Figure 1 shows 
the major river basins in Ethiopia including the Awash River 
Basin and the sub-basins in of the ARB. The western 64.000 
km2 of the Basin contributes nearly the entire surface runoff 
of the Basin (Adeba et al. 2015). High stream distribution and 
density in the western side of the Basin (Fig. 1) also shows the 
relatively high contribution of surface runoff by the western 
side of the basin.

Data and methods
Monthly gauge rainfall data were obtained from the 

National Metrological Agency (NMA) of Ethiopia for 23 
major gauge stations across the basin (Fig. 2).The major gauge 
stations considered in this study are those of class- A stations 
and having at least 30 years weather data. The percentage 
missing data were estimated for each station. Stations with data 
length not less than 30 years and with missing data less than 
10% were originally targeted for selection. However, as the 
number of station meeting the criteria dropped significantly, 
stations with missing data around 15% were alsoincluded. 
Dinku et al.(2008) have used similar criteria among other.

They removed time-series less than 15 years and with 
excessive missing data. The missing observation data 
for the remaining gauge stations were replaced by linear 
interpolation. This method of interpolation is used to estimate 
values of unknown point from values of known data points 
based on linear relationship. It may not be accurate for rainfall 
due to his high natural variability. However, it can provide 
reasonable estimate for rainfall with limited missing data 
and a narrow time interval. In addition, the method is often 
the most practical especially underno nearby weather station 
where more precise spatial interpolation method such as 
Kriging interpolation would be difficult to carry out.Then, the 
temporal homogeneity of the data from selected stations were 
tested using the standard normal homogeneity test (SNHT), 
the Buishand range test, Pettitt test, and  the Von Neumann 
ratio test. The tests are based a null hypothesis - the time 
series are homogenous. These methods are widely used to test 
temporal homogeneity of gauge data (Kang & Yusof 2012, 
Javari 2016, Ahmed et al. 2019).

The homogeneity tests were carried out because 
inhomogeneity in the data from weather station needs to be 
checked before using the data for further analysis (Zwiers & 
Zhang 2009). The results of the four tests were used together 
to classify the level of homogeneity in the time series as 
‘useful’(Class A), ‘doubtful’(Class B) and ‘suspect’(Class C) 
depending on the number of homogeneity tests rejecting the 
null hypothesis. When none or one of the four tests rejects 
the null hypothesis, the homogeneity status is classified as 
Class A, such data can directly be used for further analysis. 
When any two of the four tests reject the null hypothesis, the 
homogeneity status of the time series is classified as Class B, 
suchtime series data have inhomogeneous signal and should 
be critically inspected before using for further analysis. When 
three or all of the four tests reject the null hypothesis, the 
homogeneity status of the time series is classified as Class C , 
such data cannot be used in further analysis before necessary 
corrections (Wijngaard et al. 2003, AL-Lami et al. 2014, 
Chang & Ghani 2017, Elzeiny et al. 2019a). 

The NetCDF data files of Global Precipitation Climatology 
Centre Full Data Reanalysis (GPCC_FD) version Total Full 
V2018 (0.5x0.5) and the Climate Research Units (CRU) Ts 
version 4.01, were obtained from online- archives (https://
data.ceda.ac.uk for the CRU dataset and https://www.esrl.
noaa.gov for GPCC dataset).These versions of both datasets 
provide global monthly precipitation data at a 0.5° by 0.5° 
spatial resolution for the period 1901 to 2016. The CRU 
dataset also provides data for other climate variables such as 
air temperature and potential evapotranspiration (Schneider et 
al. 2015, Jones 2017). 

There are two approaches to compare grid data with station 
observations: Grid to grid or point to point comparison. For 
grid to grid comparison, point data from weather stations need 
to be converted to grid data for the required grid size.  For point 
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to point comparison, the grid data need to be interpolated to 
a location of the point data (Ahmed et al. 2019). One method 
cannot inherently be consider as more accurate than the other.  
The suitable method depends the specific application and the 
purpose as both have strength and weakness.  A point-to-point 
comparisons provide a direct, location-specific comparison of 
values, because of this it is ideal for validating the accuracy 
of gridded data against particular ground truth locations. A 
grid-to-grid comparison is suitable for large-scale analysis. 
However, the density and quality of the station data used to 
build the grid have a significant impact on its accuracy. In 
our case, there are limited weather stations over the study 
area with reliable and long term data within 0.5 degree 
grid.  The performance of the gridded dataset are, thus, to be 
evaluated,against data over these locations.  For these reasons, 
point to point comparison was applied in this study.

The monthly rainfall data were extracted from the 
respective NetCDF files of the two gridded datasets for four 
grid points surrounding each of the weather station. In order 
to get point data from the grid data, the grid data over the four 
grid point surrounding each weather station were interpolated 
to locations corresponding to the weather stations using 
Inverse distance weighted average (IDWA) interpolation 
method (power of 2).This interpolation method and parameter 
(power of 2) have been used for rainfall interpolation for a 
study in the Awash River basin (Getahun et al. 2021).To 
assess the strength of relationship between observed and grid 
data, the Pearson correlation coefficient were computed for 
the entire monthly data series. The correlation coefficient is 
widely used in similar studies to assess the level relationship 
between two datasets (Dinku et al. 2008, 2014, Asfaw et al. 
2018, Gebrechorkos et al. 2018). Several statistical error 
and bias estimatorssuch as Mean Bias Errors (MBE), Mean 
Absolute Error (MAE), Modified Index of Agreement,  
androot mean square error, and  relative efficiency have 
been used in similar studies (Dinku et al. 2008, 2014, Asfaw 
et al. 2018, Gebrechorkos et al. 2018, Ahmed et al. 2019). 

These estimators are similar in that they all are related to the 
magnitude of deviations between values of observed and grid 
data in different ways.  The root mean square error (RMSE). 
RMSE offers a single, comprehensible measure of prediction 
error in the same units as the target variable, it is a popular and 
useful estimator for assessing the accuracy of gridded data. 
The probability distribution of the observed and gridded data 
were compared using different goodness-of-fit tests; the two 
most widely used test include Anderson–Darling (AD) testand 
Kolmogorov Smirnov (KS) test (Asfaw et al. 2018, Ahmed et 
al. 2019, Navidi Nassaj et al. 2022). The AD test estimates 
the deviation between distributions, but it places greater 
emphasis to the tail of the distributions. Because of this, it is 
especially useful for analysis of extreme values such as heavy 
rainfall. Kolmogorov Smirnov (KS) test is non parametric 
test based on estimation of the maximum difference between 
the cumulative probability distributions functions (CPDs) of 
two datasets. This test is sensitive to maximum difference 
near the center of the probability distributions.In this study, 
Kolmogorov Smirnov (KS) test was applied to assess the 
similarity in probability distribution of the observed and 
gridded data.In addition to statistical methods, graphical 
methods are also widely used in similar studied. Thus, the 
graphical methods such as scatter plots, box plots, and Taylor 
diagram were also used in this study for graphical comparison.

The R-Statistical Software was intensively used in this 
study for different purposes.  It was used to extract the 
data from NetCDF by applying  Rscript codes prepared 
by Uddameri(2017) , for filling missing data using linear 
interpolation using the ‘ImputeTS’ package (Moritz 2019),  
for IDWA interpolation using the ‘gstat’ package (Pebesma 
& Graeler 2020) , for homogeneity  test using the ‘Trend 
package’ (Pohlert 2018), and  for correlation, KS test, RMSE 
using the ‘Stat4’ package (R Core Team 2018). While the 
Geographic Information System (GIS) software was used for 
creating shapefiles, grid making, and mapping. 

 Figure 1. Major River Basins in Ethiopia and the Awash River Basin and its sub-basins.
Figures 1 is based on GIS files from the Ministry of Water Resources of Ethiopia
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RESULTS AND DISCUSSIONS

Estimated percentage missing data 
From 23 weather stations under consideration (Fig. 2), 

ten stations (Tab.1)with the least percentage missing data and 
relatively longer data records were selected. Stations with 
data length of 30 years and missing data less than 10% were 
originally targeted. However, as the number of station meeting 
the criteria dropped significantly, stations with missing data 
around 15% were included. The selected weather stations and 
the respective estimated percentage of missing data are shown 
in Table 1.     

Homogeneity tests

The standard normal homogeneity test (Tab. 2) shows that 
the monthly rainfall time series are homogenous (α= 0.05) 
for all months across 6 stations (Adama, Addis Ababa, Dire 
Dawa, Metahara, MehalMeda, and wonji) and for most of 
the months across the remaining 4 stations. According to this 
test, around 91% of monthly time series across the selected 
stations are homogenous (α= 0.05). 

The Buishand range test (Tab. 3) shows that the monthly 
rainfall time series are homogenous (α= 0.05) for all months 
across 6 stations (Adama, Addis Ababa, Melkasa, Metahara, 
Mezezo, and Wonji) and for most of the months across the 

other 4 stations. According to this test, around 95% of monthly 
time series across the selected stations are homogenous (α= 
0.05).  

The Pettitt test (Tab. 4) shows that the monthly rainfall 
time series are homogenous (α= 0.05) for all months across 
6 stations (Adama, Addis Ababa, Debrezeit, Mezezo, 
MehalMeda, and Wonji) and for most of the months across 
the other 4 stations. According to the Pettitt test, around 95 
% of monthly time series are across the selected stations 
homogenous (α= 0.05).  

The Von Neumann ratio test (Tab. 5) shows that the 
monthly rainfall time series are homogenous (α= 0.05) for all 
months across 4 stations (Addis Ababa, Debrezeit, Metahara, 
MehalMeda) and for most of the months across the remaining 
6 stations. According to this test, around 90 % of monthly 
time series across the selected stations are homogenous (α= 
0.05).  

The results show thatabout 94% the tests (112 out of 120) 
are rejected byone or none of the four tests. These monthly 
time series data can be classified as Class A, indicating that 
the data issuitable for further analysis. The tests for 5.8% 
of the tests (7 out of 120) are rejected by two of the four 
tests. The data can be classified as Class B, indicating that 
thehomogeneity of this data is questionable. The tests for a 
single monthly time series for February at Majete station (less 

Figure 2. Selected 23 weather stations in the Awash River Basin.
Figures 2. is based on GIS files from the Ministry of Water Resources of Ethiopia and the coordinates of the stations are taken from the 

website of the National Metrological Agency of Ethiopia: (http://www.ethiomet.gov.et).
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than 1 %) is rejected by three of the four tests, the data can be 
classified as Class C, indicating that the data is spurious and 
cannot used for some analysis such as trend analysis. This 
means 94 % of the time series data are homogenous while 
around 6% of them have some signal of inhomogeneity. It is 
well known that inhomogeneity in data is potentially attributed 
to non-climatic factors  such as relocation of weather stations, 
changes in measuring instruments, significant change  in 
site surrounding condition,  and alterations in observation 
procedures.  The surrounding areas of the stations in Dire 
Dawa and Melkasa are known to have changed much due to 
increased urbanization around the stations which were known 
to be in the outskirt of the city area in old times. The station 
at Majate might have potentially also experienced similar 
change of surrounding area or update of instrumentation 
due to the fact that the station is among the oldest stations in 
Ethiopia.

Homogeneity testsfor monthly rainfall time series for 
locations in the Awash river Basinshave recently been 
investigated by a couple of studies. Similar to this study, 
Daba et al.  and  Getahun et al. (2021) employed the four 
tests (standar normal homogeneity test (SNHT), the Buishand 
range test, Pettitt test, and  the Von Neumann ratio test), and 
classified the time series as class A, B, and C. Daba et al. 
(2020) assessed homogeneity of monthly as well asannual 
rainfall time series for stations in the upper Awash river basin. 
They have not indicated the percentage of time series in 
each classes, however, from the number of time series they 
provided the parentage of time series in each class can be 
estimated. 

Accordingly, about 65.2% of the monthly time series are 
of class A, about 32.4% of the monthly time series are ofclass 
B, and about 2.3% of the monthly time series are of class C. 
Similarly, Getahun et al. (2021) assessed the homogeneity 
of basin- average monthly rainfall time series for Awash 
river basin to identify change detection periods. They found 
monthly time series of all months except for February and 
April are of class A. The time series for the month of February 
is found as of class C and that of April is found as class of B. 
Accordingly, more than 83% of the time series in this study 
are of class A. Some other studies have also investigated the 
homogeneity for annual rainfall time series for locations in 
Awash river basin (Adane et al. 2020, Edris et al. 2021). 
Edris et al. (2021) used all the four methodsused in this study 
while Adane et al. (2020) used double mass curve for the 

homogeneity testing. Edris et al. (2021) found that the annual 
rainfall times series are homogenous for  90% of the stations. 
It is clear that homogeneity is easier to achieve for annual 
time series than monthly time series data.Direct comparison 
of the results may be difficult due to difference data length, 
location, methods used, and spatial extent of analysis. 
However, generally the finding for monthly time series in 
this study showed higher level of homogeneity.The results 
imply that the monthly rainfall data for the selected weather 
stations in the Awash River Basin have not been significantly 
affected by artificial factors such as dislocation of weather 
stations, change in measurement instruments, procedure, 
and calibration and maintenance of the measuring devices. 
Therefore, the data from selected weather stations can be 
used as reference to assess the performance derived gridded 
datasets.
Correlation analysis 

The entire monthly rainfall data from the gridded datasets 
were compared with observation data at the selected weather 
stations. The results of Pearson correlation (Tab. 6) show that 
rainfall data extracted from both the CRU and the GPCC 
datasets are generally significantly and highly correlated 
with the corresponding observation data. The GPCC showed 
higher correlation with observed data than the CRU for all 
stations except at Adama. Still, on average, the GPCC showed 
higher correlation coefficient than that of the CRU. The scatter 
plots of observed data versus datasets in Figure 3 shows that 
data from both the CRU and the GPCC datasets are not only 
highly and positively correlated to the observed data but also 
more closely and linearly follow the trend of the observed 
data. However, data from the GPCC dataset shows stronger 
positive correlation (R2 = 0.94 for GPCC) with observed data 
than the CRU (with R2 = 0.88 for CRU) (Fig. 4). In addition, 
the GPCC data follows the trend of the observed datamore 
closely with smaller number of outliers than that of the CRU. 
The box plot in Figure 5 shows the median value of the 
correlation coefficient for the GPCC is higher and with range 
smaller variability than that of the CRU.Overall, the GPCC 
dataset shows higher level of association with observed data 
than that of the CRU dataset.

Dinku et al. (2008) found an average correlation 
coefficients of 0.95 between observed rainfall data and 
GPCC-full and that of 0.90 between observed rainfall data 
and CRU for locations in the central Ethiopian highlands.

Table 1. Selected weather stations and estimated percentage missing data.
SN  Gauge Station Latitude N Longitude E Data Period Missing Data %
1 Addis Ababa 9.02 38.50 2015–1960 2.6
2 DebreZeit 8.72 39.00 2013–1960 13.1
3 Dire Dawa 9.60 41.85 2015–1960 2.1
4 MehalMeda 10.23 39.68 2015–1974 13.1
5 Melkasa 8.40 39.33 2013–1977 0.67
6 Metahara 8.86 39.92 2015–1984 7.2
7 Mezezo 9.97 39.97 2015–1986 16.4
8 Adama 8.55 39.28 2015–1980 14.3
9 Majete 10.45 39.85 1988-2015     8.3        

10 Wonji 8.48 39.25 1960-2015    10.1

(The Coordinates of the stations are taken from the website of the National Metrological Agency of Ethiopia: http://www.ethiomet.gov.et).      
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Table 2. Test statistics (T) for SNHT over the gauge stations (* denotes T is statistically significant at 5% significance level).

 Stations 
Months 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Adama 4.2 3.9 2.1 2.1 4.1 7.0 6.1 6.8 2.9 1.3 3.4 4.4
Addis Ababa 3.2 3.4 2.5 2.2 1.0 2.3 3.8 4.1 5.5 1.2 2.3 2.2
Dire Dawa 3.6 6.8 3.2 5.1 1.8 4.1 6.2 7.2 3.1 3.8 7.1 4.0
DebreZeit 1.8 2.9 3.6 4.5 3.5 5.6 5.1 10.7* 11.8* 2.1 3.3 5.2
Melkasa 12.7* 3.6 2.1 10.0* 2.4 10.4* 10.4* 3.0 11.9* 15.6* 3.4 2.3
Metahara 2.0 7.6 5.0 7.1 5.4 5.4 3.2 3.9 7.7 3.0 7.4 1.0
Majete 5.7 14.7* 3.7 2.8 3.9 4.3 7.01 3.0 3.7 3.3 2.3 2.4
MehalMeda 1.7 6.0 2.7 3.9 1.2 1.1 4.8 2.2 6.5 5.2 0.8 1.1
Mezezo 4.2 10.9* 4.0 3.7 8.0* 4.5 6.7 1.7 3.9 2.4 4.0 2.6
Wonji 2.0 3.2 5.1 4.5 5.4 7.3 6.6 3.4 6.1 1.4 2.3 3.2

Table 3. Test statistics (R/sqrt (n)) for Buishand range test over the gauge stations (* denotes R/sqrt(n) is statistically significant 
at 5% significance level, P-value is less than 0.05).

Stations 
Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Adama 0.9 1.3 0.9 1.0 1.4 1.3 1.3 1.2 1.1 1.1 1.0 0.9

Addis Ababa 1.1 1.3 0.7 0.9 0.8 0.9 0.9 1.2 1.0 1.0 1.1 1.0

Dire Dawa 1.4 1.5 1.1 1.6* 1.0 1.2 1.8* 1.3 1.1 1.1 1.2 1.2

DebreZeit 0.9 1.1 0.8 1.3 1.2 1.0 1.3 1.5 1.7* 1.0 0.9 1.6*

Melkasa 1.3 0.9 1.1 1.0 1.1 1.2 0.9 0.8 1.5 1.2 1.2 1.1

Metahara 0.9 1.4 1.3 1.2 1.2 0.9 1.0 1.1 1.4 1.0 1.2 0.8

Majete 1.2 1.6* 1.1 0.8 0.8 1.3 1.4 1.0 0.8 1.1 0.9 0.9

MehalMeda 0.9 1.5 1.0 0.9 0.8 0.6 1.7* 0.9 0.8 0.9 0.8 1.0

Mezezo 1.1 1.5 1.0 0.8 1.3 1.3 1.3 1.0 1.1 1.2 1.1 1.1

Wonji 1.0 1.3 1.4 1.0 1.0 0.9 1.0 0.9 1.4 1.0 1.2 1.3

Table. 4 Test statistics (U*) for Pettitt test over the gauge stations (* denotes U* is statistically significant at 5% significance 
level, P-value is less than 0.05).

 Stations
 Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Adama 232 291 129 139 227 254 279 157 204 124 267 171

 Addis Ababa 173 226 160 140 120 162 176 144 246 94 180 198

Dire Dawa 206 292 263 257 176 218 *337 169 166 246 197 250

DebreZeit 179 99 119 151 186 196 202 266 258 124 139 111

Melkasa 80 117 90 117 80 80 106 101 *176 86 151 59

Metahara 57 *136 100 *138 84 50 46 70 98 66 144 52

Majete 91 *114 70 44 58 54 108 62 70 46 98 54
MehalMeda 99 171 84 134 59 127 206 72 76 88 125 73

Mezezo 65 102 84 58 70 80 82 48 52 68 103 54

Wonji 139 178 255 204 144 184 141 208 196 160 249 125
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The average correlation found by this study is higher than 
that of our study. In this study, data from large number of 
stations across central Ethiopian highlands are included. It 
is not clearly indicated in the study as to which locationsin 
the Awash River basin are also included. In addition, the 
data periods are quite different. These conditions might have 
caused difference in the findings. Yet, the finding by Dinku 
et al. (2008) is in agreement with that of our study in that 
there strong correlation between observed rainfall data and 
corresponding data from the CRU and the GPCC datasets 
and the correlation coefficient for the GPCC is higher than 
that of the CRU. For locations in northcentral Ethiopia, not 
in Awash river basin, Asfaw et al. (2018) found that data 
from GPCC are significantly and strongly correlated with 
station data (r = 0.72, p < .001) whereas they found that 
data from CRU dataset are not significantly correlated with 
observed data (r = 0.27, p > 0.1).  The correlation coefficients 
for both GPCC and CRU of this study are lower than that 
ofcorresponding values in our study. Asfaw et al. (2018)
studied locations in different basin, this among other factors 
clearly affect the possibility of getting comparable results.  
Yet, the findingis partly agreement with that of our study in 
that there strong correlation between observed rainfall data 
and corresponding GPCC.

Root mean square error
The root mean square error (RMSE) estimated are shown 

in Table 7 and Table 8. For the CRU dataset, the mean monthly 
RMSE over the stations varies from 21.3mm in November 
to 90 mm in July. For the GPCC dataset, the mean monthly 
RMSE over the stations varies from 20.6mm in December to 
77.2 mm in August. The mean and median monthly RMSE for 
the CRU dataset are higher than that of the GPCC dataset for 
all months except for November (Tab. 7 and 8, Bar plot in Fig. 
5, and Box plot in Fig. 6).

The annual RMSE over the stations for CRU dataset 
varies from 515.8mm at Dire Dawa to 1247.3 mm at Mezezo. 
The annual RMSE over the stations for GPCC datasets varies 
from 248.8mm at Addis Ababa to 1192.9 mm at Mezezo. The 
annual RMSE for the CRU dataset are higher than that of the 
GPCC dataset for all station except at Addis Ababa (Table 
7 and 8). The annual mean RMSE for CRU dataset 728mm 
is far higher than annual mean RMSE for GPCCC dataset 
541.57mm. Clearly, the monthly and annual RMSE values 

are generally higher for the CRU dataset than that of GPCC 
dataset. The GPCC dataset is more close to the observation 
data than that of the CRU dataset.

Looking at Figure 5 and 6, it can be noted that the root 
mean square errors for both CRU and GPCC datasets are 
highest for summer months (June to September, the main 
rainy season) followed by the spring months (February to 
May, the small rain season). The errors are the least for the 
winter months (October to January, the dry season). Studied 
show that high rainfall variability and high rate of rainfall in 
a season reduces the ability of rainfall product to predict the 
rainfall (Haile et al. 2010, Mekonnen et al. 2021, Asfaw et al. 
2023, Li & Shao 2025). The RMSE can be normally higher 
for rainy season either due to high rainfall variability and/or   
more frequent heavy rainfall events in rainy season, which are 
typically more difficult to predict accurately.

In Ethiopia and in Awash River basin the variability of 
rainfall is generally higher in the dry season than in rainy 
season.  Thus, the most likely reason for higher RMSE in 
rainy season than the dry season would be related to more 
frequent heavy rainfall events in rainy season. The monthly 
and annual Root mean square error (RMSE) is exceptionally 
highest at Mezezo which is also the gauge location with 
highest missing data. The lowest annual and monthly RMSE 
are found at Dire Dawa and Addis Ababa and where the 
missing data are also the lowest (Tab. 1). This implies the 
errors are highly associated with data quality at the weather 
stations.  This indicates the performance of derived gauge 
data (GPCC and CRU) is markedly being influenced by the 
interpolation techniques employed to replace missing data 
during development of the gridded datasets.

None of the two related local studies, by Dinku et al. (2008)  
and by Asfaw et al. (2018), which compared GPCC and CRU, 
used mean root mean square for comparison. However, Dinku 
et al. (2008) used mean error (ME), and mean absolute error 
(MAE). They found that GPCC-full showed lower error than the 
CRU. Similar to the local studies, a study in Pakistan by Ahmed 
et al. (2019) did not use mean root mean square for comparison. 
Based on the Mean Bias Errors (MBE) and Mean Absolute 
Error (MAE), they found mixed results for different regions and 
months, but overall the GPCC dataset showed lowest error and 
bias than the CRU dataset. The results of the previous studiesare 
generally in agreement with the results of this study.

 Table 5. Test statistics (RVN) for Von Neumann ratio test over the gauge stations (* denotes RVN is statistically significant at 
5% significance level, P-value is less than 0.05).

 Stations
 Months                                         

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Adama 1.7 1.8 2.1 2.0 2.3 2.1 1.7 1.8 2.3 1.9 *1.5 2.1

 Addis Ababa 1.8 2.1 1.9 2.3 2.4 2.1 1.9 1.9 2.3 1.6 1.9 2.0

Dire Dawa 2.2 1.8 1.6 *1.5 1.7 1.9 1.9 1.9 1.9 2.0 2.2 2.0

DebreZeit 1.6 2.6 1.8 1.8 1.9 1.8 1.6 1.7 2.3 1.8 1.7 2.0

Melkasa 1.8 2.2 2.0 1.6 2.0 2.2 2.1 2.2 1.8 *1.4 1.9 1.8

Metahara 2.0 1.7 1.9 1.7 2.1 2.8 2.5 2.0 2.0 1.5 1.8 2.0

Majete *1.4 1.5 1.9 2.6 2.5 *1.3 *1.3 *1.4 2.0 1.7 1.9 2.1
MehalMeda 1.8 1.6 2.0 2.0 2.5 2.3 1.5 2.1 2.3 1.6 1.9 2.3

Mezezo 1.9 *1.3 2.1 2.4 1.9 *1.2 1.2 1.5 1.9 1.9 1.8 2.4

Wonji 1.7 2.0 1.7 *1.5 1.7 2.0 2.1 2.2 1.8 1.9 2.0 1.6
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Figure 3. The scatter plots of monthly rainfall, observed versus gridded datasets at Addis Ababa for the period 1960-2015.

Figure 4. Comparison of the box plots for Pearson correlation coefficient (CC) for the CRU and GPCC datasets.

Figure 5. Bar plot for spatial mean of the root mean square error (RMSE) across elected stations for the CRU and GPCC datasets.
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Table 6. Pearson correlation coefficient (CC) between gauge and grid data. 
Stations CRU dataset   p-value GPCC dataset   p-value

Adama/Nazert 0.68 0.00E+00 0.63 0.00E+00

 Addis Ababa 0.94 1.70E-170 0.97 2.11E-187

DebreZeit 0.86 2.99E-204 0.84 2.01E-194

Dire Dawa 0.86 7.89E-179 0.87 1.11E-97

Majete 0.86 4.06E-141 0.87 3.03E-116

MehalMeda 0.77 1.12E-115 0.90 2.52E-77

Melkasa 0.84 7.45E-86 0.88 9.30E-79

Metahara 0.78 7.79E-48 0.87 2.65E-58

Mezezo 0.80 6.59E-101 0.82 4.27E-96

Wonji 0.82 2.99E-204 0.87 1.34E-161

Mean 0.82 0.85

Note: The p-Value for both datasets and all stations are by far less than 0.05 and 0.01, indicating there is 99% confidencethat calculated 
correlation values are not because of random errors.

Figure 6. Box plots for monthly root mean square error (RMSE) across selected stations for the CRU and GPCC datasets.

Table 7. Root mean square error (mm/month or year) for CRU datasets against gauge data.

 Stations Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Adama 33.3 51.8 55.0 58.9 65.0 60.4 129.2 104.8 58.2 60.7 30.5 20.2 728

 Addis Ababa 12.6 16.9 30.1 38.0 34.8 39.8 69.0 60.3 45.9 25.6 11.7 16.5 401.2

Dire Dawa 17.5 29.1 35.4 46.8 45.1 21.0 30.1 28.8 34.9 35.2 17.9 17.9 359.7

DebreZeit 19.2 37.8 52.4 38.6 47.8 42.9 68.0 67.2 48.9 43.2 27.7 22.1 515.8

Melkasa 23.1 22.3 31.0 36.6 49.8 39.2 67.9 53.6 33.7 31.2 23.1 27.2 438.7

Metahara 23.2 24.0 32.0 51.2 75.1 41.2 58.4 79.1 52.7 43.4 13.7 15.4 509.4

Majete 29.2 29.6 40.2 44.6 60.2 73.1 95.2 126.4 60.1 63.7 50.6 54.3 727.2

MehalMeda 29.9 29.9 51.4 65.9 74.2 45.0 140.6 91.5 81.0 58.3 39.9 40.3 747.9

Mezezo 72.5 56.7 68.2 80.2 74.4 56.5 240.8 236.3 116.8 105.0 59.2 80.7 1247.3

Wonji 28.7 38.0 39.3 39.8 40.2 44.4 92.8 65.3 42.3 27.8 16.8 16.1 491.5

Mean 28.9 33.6 43.5 50.0 56.7 46.4 99.2 91.3 57.5 49.4 29.1 31.1 728
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The Kolmogorov-Smirnov test  
The similarity in probability distributions of the observed 

data and data from the two gridded datasets were tested by the 
Kolmogorov-Smirnov (KS) test.  The results of the KS test (Tab. 
9 and 10) releveled that among 120 monthly time series from 
each of the dataset (CRU and GPCC), only 28.8% of the time 
series  for the CRU and 33.3% for the GPCC dataset showed 
similar probability distribution with gauge data (α = 0.05). The 
remaining monthly time series (71.2% for the CRU and 66% for 
the GPCC) for the two datasets failed (α = 0.05) to show similar 
probability distribution with respective gauge data.

Looking at the previous studies in Ethiopia, Dinku et 
al. (2008) did not compare the probability distribution of 
gridded dataset with the observation data. While Asfaw et al. 
(2018) compared GPCC and CRU probability distribution 
of data from the datasets and the observation station using  
Kolmogorov-Smirnov test. Asfaw et al. (2018) found that 
the data from GPCC dataset followed probability distribution 
of an average gauge data but that of CRU dataset failed to 
follow probability distribution of an average of gauge data 
over the locations in the northern central Ethiopia. The studies 
have not shown the results for each month. Similar study in 
Pakistan by Ahmed et al.(2019) found different results for the 
CRU and GPCC across climatic regions–semi-arid, arid, and 
hyper arid areas. They found that GPCC dataset replicated 
similar probability distributions with gauge data for 9, 7, and 9 
months for semi-arid, arid, and hyper arid areas, respectively. 
Whereas the CRU dataset replicated similar probability 
distributions with gauge data for 6, 10, and 0 months for 
semi-arid, arid, and hyper arid areas, respectively.In semi-arid 
and hyper region, the GPCC dataset showed similarity with 
observed data for more number of months than that of the 
CRU dataset. While in arid region, the CRU dataset showed 
similarity with observed data for more number of months than 
that of the GPCC dataset. They found similar distributions 
between the datasets and gauge data in most of the months 
(for 25 out of 36 months for GPCC and 16 out 36 months for 
the CRU).  This is in contradiction to the result of this study. 
Overall, the GPCC showed similarity with observed data for 
higher number of months than that of the CRU. This is in 
agreement with the result of this study.

The difference in the results of this study and previous 
studies are potentially attributed to the difference in density 

of weather stations and the quality of data from observation 
stations in the study areas. The difference in the versions of 
datasets and the method of analysis used in the studies would 
also have influence on the results.

The failure in the CRU and GPCC datasets in this study to 
replicate similar probability distribution with observed data 
for large majority of monthly time series could be attributed 
to inherent uncertainties in the gridded or observation data. 
On one hand, there are inherent uncertainties in the gauge 
based gridded datasets mainly associated with the density of  
gauge stations, quality of gauge data, and the interpolation 
techniques used during construction of the datasets. As a 
result, the capability of gridded data to replicate spatial and 
temporal climate variability might be limited (Nashwan et al. 
2019, Tozer et al. 2012). However, the uncertainties associated 
with random and systemic errors in gridded datasets are often 
fairly low (Dinku et al. 2008). On the other hand, the quality 
of observation data used would affect the KS test.

In summary,  the Pearson correlation coefficients, root 
mean square errors, and KS test (α = 0.1) in this study showed  
that the GPCC dataset has better performance than the CRU 
dataset. Taylor diagram (Fig. 7) also illustrates that GPCC 
dataset performs better than CRU dataset. With respect to 
the similarity of the probability distribution of the dataset 
with observed that GPCC dataset showed similar probability 
distribution with observed data for more number of time 
series than that of the CRU dataset. In agreement with that, 
eastern African regional study by Dinku et al. (2008) reported 
that the GPCC showed best statistics best overall statistics 
over the CRU dataset. A number of other studies in different 
regions across the worldalso reported that the GPCC dataset 
performs better than the CRU dataset (Nashwan et al. 2019, 
Ahmed et al. 2019, Hu et al. 2018, Faiz et al. 2018). The 
relative higher performance of the GPCC dataset might have 
be owning to the fact that the GPCC dataset is derived based 
on ground  observation data from much larger number of the 
weather stations (85,000) across the world compared to that of 
the CRU (4000). Furthermore, the highest RMSE for location 
with large missing data and the lowest RMSE at locations 
with lowest missing data indicate how significantly the data 
quality from observation station affect the performance of the 
derived climate products.

Table 8. Root mean square error (mm/month or year) for GPCC datasets against gauge data.

 Months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Adama 32.1 52.1 60.9 56.1 60.5 55.5 134.9 100.5 53.7 61.5 32.3 22.4 722.5

 Addis Ababa 7.8 13.2 23.1 27.7 20.2 25.6 40.7 32.3 24.7 11.7 13.9 7.9 248.8

Dire Dawa 17.5 29.1 35.4 46.8 45.1 21.0 30.1 28.8 34.9 35.2 17.9 17.9 359.7

DebreZeit 17.5 38.8 49.7 39.4 41.5 40.7 68.3 65.0 37.1 40.7 24.1 24.1 486.9

Melkasa 12.1 26.2 29.2 36.9 36.0 33.6 77.9 50.9 33.0 31.7 25.4 25.3 418.2

Metahara 15.3 10.3 24.2 36.8 29.5 32.5 39.4 51.5 35.8 38.5 17.9 11.4 343.1

Majete 28.2 21.5 42.0 46.8 51.0 71.1 53.2 111.5 64.9 53.5 48.3 48.2 640.2

MehalMeda 25.1 25.5 38.2 38.6 37.6 32.6 98.2 92.3 56.9 44.6 40.8 41.0 571.4

Mezezo 77.7 46.4 66.9 82.7 85.5 58.4 204.8 226.6 118.1 92.7 56.2 76.9 1192.9

Wonji 24.4 38.2 40.0 38.6 31.7 35.9 78.6 54.6 37.0 23.1 17.4 12.5 432

Mean 25.8 30.1 41.0 45.0 43.8 40.7 82.6 81.4 49.6 43.3 29.4 28.8 541.57
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Table 9. Kolmogorov-Smirnov (KS) test statistics (D) for monthly time series from gauge and CRU dataset.

 Months
 Months                                                        

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Adama *0.25 *0.25 0.22 **0.27 **0.26 **0.27 *0.23 *0.23 **0.27 **0.27 **0.27 **0.38

 Addis Ababa **0.29 0.19 0.14 0.08 0.16 **0.31 **0.31 **0.28 **0.29 **0.26 **0.44 **0.48

Dire Dawa **0.39 0.20 0.13 0.09 *0.24 **0.34 **0.26 *0.25 *0.25 **0.29 **0.32 **0.41

DebreZeit **0.40 **0.36 *0.25 *0.24 **0.30 *0.26 0.22 0.20 **0.27 **0.32 **0.38 **0.54

Melkasa *0.27 0.24 0.21 **0.35 0.25 0.20 0.20 0.26 0.22 0.23 **0.32 0.23

Metahara **0.42 **0.35 0.20 **0.48 **0.49 **0.58 **0.37 **0.57 **0.68 **0.43 **0.31 **0.37

Majete *0.29 0.25 0.22 **0.33 0.22 0.24 **0.40 **0.50 **0.33 0.21 0.23 *0.31

MehalMeda **0.32 0.21 0.21 **0.45 **0.45 **0.38 **0.28 0.16 **0.68 **0.42 **0.45 **0.39

Mezezo **0.47 **0.33 **0.38 **0.50 0.16 **0.36 **0.80 **0.84 **0.64 **0.40 **0.32 **0.46

Wonji **0.32 **0.40 0.16 **0.32 0.14 **0.32 **0.26 0.25 0.25 **0.26 **0.26 **0.37

Key: * and ** denote D is statistically significant at 10 % and 5% significance level, respectively. 

Figure 7. Taylor Diagram to compare the two datasets against observed data based on Centered Root Mean Square Error (RMSE), 
Correlation Coefficient, and Standard Deviation at Addis Ababa for the entire monthly data (1960-2015).

Table 10. Kolmogorov-Smirnov (KS) test statistics (D) for monthly time series from gauge and GPCC dataset.

 Months
 Months                                                   

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Adama **0.41 **0.34 *0.23 **0.32 **0.28 **0.34 **0.31 **0.32 *0.23 **0.39 **0.43 **0.55
 Addis Ababa **0.36 **0.27 0.12 0.12 0.13 0.18 0.21 0.13 0.11 0.19 **0.51 **0.55

Dire Dawa **0.39 0.20 0.13 0.09 0.24 **0.34 **0.26 *0.25 *0.25 **0.29 **0.32 **0.41

DebreZeit **0.51 **0.41 *0.25 *0.24 0.18 0.15 0.17 0.18 0.20 0.27 **0.47 **0.60
Melkasa **0.41 **0.33 0.23 **0.34 **0.33 **0.31 0.25 0.19 **0.31 **0.30 **0.47 **0.38
Metahara **0.49 **0.42 0.25 **0.52 **0.40 **0.45 *0.30 **0.46 **0.54 **0.51 **0.39 **0.51
Majete 0.26 **0.32 0.18 *0.31 0.24 0.14 0.20 **0.36 **0.40 0.24 0.27 **0.38

MehalMeda **0.30 0.20 0.12 0.23 **0.29 0.25 0.19 **0.30 **0.41 **0.30 **0.46 **0.42
Mezezo **0.52 0.27 **0.34 **0.42 0.18 **0.47 **0.68 **0.70 **0.59 **0.36 0.22 **0.41
Wonji **0.44 **0.47 0.25 **0.33 0.18 **0.33 0.16 **0.30 **0.32 **0.28 **0.39 **0.53

Key: * and ** denote D is statistically significant at 10 % and 5% significance level, respectively. 
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CONCLUSIONS
The monthly rainfall time series data from selected 

weather stations are dominantly (94%) homogenous across 
the selected stations at a significance level α=0.05. Rainfall 
data extracted from both the CRU and the GPCC datasets were 
significantly, and highly, correlated with the corresponding 
observation data from all weather stations. The GPCC 
dataset showed generally higher correlations with gauge data 
(CC=0.85 for monthly time series) and lower errors (with 
averaged RMSE=45 mm/month) than that of the CRU dataset 
(CC=0.82 for monthly time series, with averaged RMSE over 
location =51 mm/mm). Yet, majority of the monthly rainfall 
data from both the CRU and GPCC datasets (71.2% for the 
CRU and 66% for the GPCC) failed to follow probability 
distribution with observation data.Still, it is clear that the 
GPCC dataset showed similar probability distribution with 
observed data for more number of time series than that of the 
CRU dataset. All graphical analysis also showed that GPCC 
dataset aligns more closely with gauge data than of the CRU. 
Overall, the GPCC dataset has showed better performance 
than the CRU dataset to simulate rainfall for the Awash River 
Basin. Thus, the GPCC dataset can be used as better alternative 
source of rainfall data for hydrological analysis and modelling 
required in the planning and design of water infrastructure, 
management of water resources, and climate and hydrological 
studies in the basin, especially for ungauged and data-scarce 
areas of the river basin.Further studies are crucial to identify 
datasets that can perform better across locations and seasons 
in reducing errors and bias and in replicating the probability 
distribution of observation data.
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