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Abstract. The conventional sources of climate data are observation data from weather stations. However, there are a number of derived
datasets with varying reliability that can be considered as alternative data sources especially for areas observational data are available or
sparsely distributed. Among the several datasets, the two most commonly used derived datasets are Climate Research Units (CRU) and Global
Precipitation Climatology Centre (GPCC). The purpose of this study was to compare the performance of two gridded global datasets (GPCC-
Total Full V2018 and (CRU) Ts version 4.01) in simulating observed rainfall data from 10 selected weather stations in the Awash River Basin,
Ethiopia.The performance of the GPCC and CRU datasets were evaluated by comparing the monthly rainfall data extracted from the two
datasets with observation data (for period 1960- 2016) from the weather stations using statistical and graphical methods. Pearson correlation
coefficient (CC), root mean square error (RMSE), scatter plots, box plots, Taylor diagram, and Kolmogorov-Smirnov test were used. Prior to
using the gauge data for evaluation, the data were tested for temporal homogeneity using the standard normal homogeneity test (SNHT), the
Buishand range test, and the Pettitt test. It was found the GPCC dataset showed generally higher correlations with gauge data (CC=0.85 for
monthly time series) and lower errors (with averaged RMSE=45 mm/month) than that of the CRU dataset (CC=0.82 for monthly time series,
with averaged RMSE over location =51 mm/mm). However, it was found that majority of the monthly rainfall data from both the CRU and
GPCC datasets (71.2% for the CRU and 66% for the GPCC) failed to follow probability distribution with observation data.Still, it is clear that
the GPCC dataset showed similar probability distribution with observed data for more number of time series than that of the CRU dataset. All
graphical analysis also showed that GPCC dataset aligns more closely with gauge data than of the CRU. Overall, the GPCC dataset has showed
better performance than the CRU dataset to simulate rainfall for the Awash River Basin. Relative to the CRU dataset, the GPCC dataset reduces
the RMSE by an average of ~11% for monthly rainfall and by ~13.4% for annual rainfall in the Awash River basin. The GPCC dataset can be
used as an alternative source of rainfall data for hydrological analysis and modelling required in the planning and design of water infrastructure,
management of water resources, and climate and hydrological studies in the basin, especially for ungauged and data-scarce areas of the river
basin. Further studies are crucial to identify datasets that can perform betteracross locations and seasons in reducing errors and bias and in
replicating the probability distribution of observation data.

Key words: Rainfall (CRU, GPCC, CC), Statistical and graphical methods (SNHT, RMSE, CC), Taylor diagram, Kolmogorov-Smirnov test,
performance, Awash River Basin (Ethiopia).

Résume. Les sources conventionnelles de données climatiques sont les données d’observation provenant des stations météorologiques.
Cependant, il existe un certain nombre de jeux de données dérivés de fiabilité variable qui peuvent étre considérés comme des sources de
données alternatives, en particulier pour les zones ou les données d’observation sont disponibles ou peu distribuées. Parmi les nombreux
ensembles de données, les deux ensembles de données dérivés les plus couramment utilisés sont les Climate Research Units (CRU) et le Global
Precipitation Climatology Centre (GPCC). Le but de cette étude était de comparer la performance de deux ensembles de données mondiales en
grille (GPCC- Total Full V2018 et (CRU) Ts version 4.01) dans la simulation des données de précipitations observées provenant de 10 stations
météorologiques sélectionnées dans le bassin de la riviére Awash, en Ethiopie. La performance des ensembles de données GPCC et CRU a
été évaluée en comparant les données mensuelles de précipitations extraites des deux ensembles de données avec les données d’observation
(pour la période 1960-2016) des stations météorologiques en utilisant des méthodes statistiques et graphiques. Le coefficient de corrélation
de Pearson (CC), I’erreur quadratique moyenne (RMSE), les nuages de points, les diagrammes en boite, le diagramme de Taylor et le test de
Kolmogorov-Smirnov ont été utilisés. Avant d’utiliser les données de jauge pour I’évaluation, les données ont été testées pour I’homogénéité
temporelle en utilisant le test d’homogénéité normale standard (SNHT), le test de portée de Buishand et le test de Pettitt. Il a été constaté
que I’ensemble de données GPCC montrait généralement des corrélations plus élevées avec les données de jauge (CC=0,85 pour les séries
temporelles mensuelles) et des erreurs plus faibles (avec une RMSE moyenne = 45 mm/mois) que I’ensemble de données CRU (CC=0,82 pour
les séries temporelles mensuelles, avec une RMSE moyenne par emplacement = 51 mm/mois). Cependant, il a été constaté que la majorité des
données mensuelles de précipitations des ensembles de données CRU et GPCC (71,2 % pour le CRU et 66 % pour le GPCC) ne suivaient pas
la distribution de probabilité avec les données d’observation. Cependant, il est clair que le jeu de données GPCC a montré une distribution de
probabilité similaire aux données observées pour un plus grand nombre de séries temporelles que le jeu de données CRU. Toutes les analyses
graphique sont également montré que I’ensemble de données GPCC s’aligne plus étroitement avec les données de jauge que celui du CRU.
Dans I’ensemble, le jeu de données GPCC a montré de meilleures performances que le jeu de données CRU pour simuler les précipitations
dans le bassin de la riviére Awash. Par rapport au jeu de données CRU, le jeu de données GPCC réduit le RMSE en moyenne de ~11% pour les
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précipitations mensuelles et de ~13,4% pour les précipitations annuelles dans le bassin de la riviere Awash. Le jeu de données GPCC peut étre
utilisé comme une source alternative de données de précipitations pour 1’analyse hydrologique et la modélisation nécessaires a la planification
et a la conception des infrastructures hydrauliques, a la gestion des ressources en eau, ainsi qu’aux études climatiques et hydrologiques dans
le bassin, en particulier pour les zones non jaugées et pauvres en données du bassin fluvial. Des ¢tudes supplémentaires sont cruciales pour
identifier des ensembles de données qui peuvent mieux performer a travers les emplacements et les saisons en réduisant les erreurs et les biais
et en reproduisant la distribution de probabilité des données d’observation.

Mots clés : Précipitations (CRU, GPCC), méthodes statistiques et graphiques (SNHT, RMSE, CC), diagramme de Taylor, test de Kolmogorov-

Smirnov, performance, Bassin de la riviére Awash (Ethiopie).

INTRODUCTION

The conventional source of climate data are measurements
from weather stations. However, obtaining reliable climate
data from weather stations is not always easy for a number
of reasons. Absent or sparsely distributed weather stations,
lack of long-term data records from weathers stations, large
missing data and inhomogeneity in data from weather stations
are some of the major reasons making it difficult to obtain of
climate data from weather stations (Tsidu 2012, Dinku et al.
2014, Ahmed et al. 2019, Van Vooren et al. 2019).

Ethiopia is among the countries with insufficient number
of weather stations. There were about 910 weather stations in
Ethiopia until recent times. New stations have added in recent
years, currently there are about 1700 manned and automatic
weather stations in Ethiopia (Ethiopian Meteorological
Institute 2025). However, most of the weather stations are
located in the central and western highland areas of the
country. There is much smaller number of weather stations
in the eastern low land areasof the country, which consists
of most of the area of the Awash River basin. In addition,
the weather stations in these areas are relatively new,
making it difficult to get long year’s climate data. Ethiopian
Meteorological Institute has planned to increase the number
of rainfall recording stations to 2589 until 2030 in order to
meet the standard of world meteorological agency(National
Meteorological Agency 2020).Together with this ongoing
effort to meet the need, evaluating alternative data sources
is crucial.

Alternative data sources have been explored for climate
variables. Derived datasets are potential alternative data
sources (Sun ef al. 2018). Derived datasets include gauge-
based, satellite-related, reanalysis, and hybrids of these
datasets. Among these derived datasets, gauge based derived
datasets are widely used in climate studies (Merino et al. 2021).
In Ethiopia, a number of studies used these datasets (Wagesho
et al. 2013, Dinku ef al. 2014, Asfaw et al. 2018, Mulugeta
et al. 2019). Gauge- based datasets are directly derived from
actual meteorological observations. Because of this they show
superior performance relative to others especially for areas
with having good distribution and coverage of high quality
weather stations. For this reason, they are also considered as
the primary source to validate other products such assatellite
and reanalysis data. Gauge based derived datasets have relative
advantages over other derived dataset in that they have inherited
well defined errors and uncertainties from the observation data
and interpolation methods.Several gauge-based datasets have
been developed so far (Sun ef al. 2018, Ahmed ef al. 2019).
However, the Global Precipitation Climatology Centre (GPCC)
datasets, and the Climatic Research Unit (CRU) datasets
are the most widely used (Hu et al. 2018, Sun et al. 2018).
Global Precipitation Climatology Centre (GPCC) uses data
from large number of weather station, each of the climatology
product are based on data approximately from 85,000 weather
stations. The CRU datasets are developed by the University
of East Anglia and comprise of data for a number of climate

variables including rainfall. The CRU datasets are constructed
based on monthly gauge data from National Meteorological
Agencies (NMAs), the World meteorological organizations
(WMO), the Centro Internacional de Agricultura Tropical,
the Food and Agriculture Organization (FAO), and others.
Data from around 4000 weather stations across the world
are used for construction of the datasets. While the GPCC is
developed at DeutscherWetterdienst in collaboration with the
World Meteorological Organization (WMO) based on daily
and monthly data from National Meteorological Agencies
(NMAs), the World meteorological organizations (WMO), the
CRU, the Food and Agriculture Organization (FAO), and the
National Centers for Environmental Information as well as
from international regional projects. Data acquired from more
than 85.000 stations across the world are used to construct the
datasets (Hu et al. 2018. Sun et al. 2018). There are different
versions of datasets available for both the CRU and the GPCC
datasets. Both datasets can provide high resolution (0.5x 0.5°)
gridded global data for a period of more than 100 years. As the
results, they are regularly used by climate scientists. They have
been widely used in long-term climatic trend analysis and as
“baseline” datasets for validations of other model outputs and
satellite products (Hu et al. 2018, Sun ef al. 2018, Ahmed et
al. 2019). However, there are inherent biases and uncertainties
in those datasetsassociated with density and coverage of the
observation station, quality of observation data, amount of
missing data, and the interpolation method used in building
the datasets.Therefore, it is required to evaluate the reliability
of datasets over a particular location.

A number of studies have also evaluated the Performances
of gridded datasets for locations inEthiopia and for the East
African region. Dinku et al. (2008) evaluated five gauge-based
gridded products (three different products of GPCC, CRU,
and CPC) against gauge data over the Ethiopian Highlands.
They reporteda very good agreement between the datasets and
gauge data. They also reported reasonably low systematic and
random errors for the climate products.Woldemariam et al.
(2017) evaluated four widely used reanalysis datasets (ERA-
Interim (The European Centre for Medium-Range Weather
Forecasts (ECMWF) Re-Analysis, MERRA (Modern Era
Retrospective-Analysis), NCEP-DOE R2 and CFSR) against
on gauge data across Ethiopia. They found that the ERA-
Interim and CFSR perform better in showing the different
characteristics of daily rainfall over Ethiopia. Gebrechorkos
et al.(2018) evaluated five climate datasets from multiple data
sources [Africa Rainfall Climatology version 2.0 (ARC2),
Climate Hazards Group InfraRed Precipitation (CHIRP),
CHIRP with Station data (CHIRPS), Observational-Reanalysis
Hybrid (ORH), and regional climate models (RCMs)] against
gauge data in east African region. They found that CHIRPS,
CHIRP, and ARC2 showed best performance, while ORH,
I-RCM, and RCMs showed the worst performance. Asfaw et
al.(2018) evaluated two datasets (GPCC and CRU) against
station data over the north central Ethiopia using correlation
coefficient and Kolmogorov-Smirnov test .



Mulugeta et al. - Performance comparison of Climate Research Units and Global Precipitation Climatology Centre data sets 27
over the Awash River Basin, Ethiopia

They found that data from GPCC dataset showed higher
correlation with gauge data than that from the CRU dataset.
They found that the probability distribution GPCC data follow
the same distribution with observed data, but that of the CRU
do not follow the same distribution with observed data.

The studies cited above have different issues limiting the
information generated from them to be less useful for the
Awash River basin. Dinku et al. (2008) evaluated the five
gauge-based gridded products based ondata from large number
of weather stations across Ethiopia. This study was the first
of its kind and provided crucial information on performance
of the datasets. However, firstly, the study was carried out at
national level, so, no particular empathize can be given to the
Awash River basin. Secondly, the study did not compare the
probability distribution of gridded dataset with the observation
data.Thirdly, one of the most important statistical parameter,
the root mean square error was not employed in the study.
Lastly, the study is a bit older now, indicating that the recent
version of the datasets might be needed to be evaluated.
Woldemariam et al. (2017) and Gebrechorkos et al. (2018)
did not include the CRU and GPCC in their study. In addition,
both of these studies are carried out for national and regional
geographical areas, lacking details for the basin of interest in
our study, the Awash River basin.

On the other hand, Asfaw et al. (2018) evaluated the
GPCC and CRU over the Woleka sub-basin, in eastern part
of the Abay River basin (which is not part of the Awash river
basin). Asfaw et al. (2018) compared GPCC and CRU using
correlation and correlation coefficient and Kolmogorov-
Smirnov test alone. Some important performance metrics
such as statistical errors and bias are not included. Therefore,
it is important to evaluated performance of the recent version
of GPCC and the CRU datasets at better level of detail and
focus for the Awash River basin by employing a number of
important statistical and graphical methods. To this end, this
research was initiated to compare the performance of two
globally commonly used gauge based global gridded datasets,
the Global Precipitation Climatology Centre (GPCC) and the
Climate Research Unit (CRU), against observation data over
the Awash River Basin.

Description of the study area

Awash River Basin (ARB) is located in Ethiopia between
7°53’ N to 12° N and 37°57” E to 43°25” E. It covers an area of
116.374 square-km extending from the central highlands as high
as 4195 m above mean sea level (M.S.L) to the lower arid areas
as low as 210 m above M.S.L in the Danakil Depression. The
basin is the most important basin in Ethiopia for the river in this
basin isone of the most utilized river in Ethiopia. Thisriver is
the source of water for most of the major cities, irrigated farms,
and agro-industries of the country. The climate in the basin is
characterized as humid subtropical at the upstream region, semi-
arid in the middle region, and arid at the downstream region of
the River Basin. The land uses in the Basin include around 50%
agricultural land, 39% grassland and shrubs, and the remaining
11% under various uses (Awulachew et al. 2007, Kerim et al.
2016). Traditionally, the Basin is divided as the Upper, the
Middle, and the Lower Awash. However, hydrologically, the
Basin is divided into seven sub-basins (Fig.1). Figure 1 shows
the major river basins in Ethiopia including the Awash River
Basin and the sub-basins in of the ARB. The western 64.000
km? of the Basin contributes nearly the entire surface runoff
of the Basin (Adeba et al. 2015). High stream distribution and
density in the western side of the Basin (Fig. 1) also shows the
relatively high contribution of surface runoff by the western
side of the basin.

Data and methods

Monthly gauge rainfall data were obtained from the
National Metrological Agency (NMA) of Ethiopia for 23
major gauge stations across the basin (Fig. 2).The major gauge
stations considered in this study are those of class- A stations
and having at least 30 years weather data. The percentage
missing data were estimated for each station. Stations with data
length not less than 30 years and with missing data less than
10% were originally targeted for selection. However, as the
number of station meeting the criteria dropped significantly,
stations with missing data around 15% were alsoincluded.
Dinku et al.(2008) have used similar criteria among other.

They removed time-series less than 15 years and with
excessive missing data. The missing observation data
for the remaining gauge stations were replaced by linear
interpolation. This method of interpolation is used to estimate
values of unknown point from values of known data points
based on linear relationship. It may not be accurate for rainfall
due to his high natural variability. However, it can provide
reasonable estimate for rainfall with limited missing data
and a narrow time interval. In addition, the method is often
the most practical especially underno nearby weather station
where more precise spatial interpolation method such as
Kriging interpolation would be difficult to carry out.Then, the
temporal homogeneity of the data from selected stations were
tested using the standard normal homogeneity test (SNHT),
the Buishand range test, Pettitt test, and the Von Neumann
ratio test. The tests are based a null hypothesis - the time
series are homogenous. These methods are widely used to test
temporal homogeneity of gauge data (Kang & Yusof 2012,
Javari 2016, Ahmed et al. 2019).

The homogeneity tests were carried out because
inhomogeneity in the data from weather station needs to be
checked before using the data for further analysis (Zwiers &
Zhang 2009). The results of the four tests were used together
to classify the level of homogeneity in the time series as
‘useful’(Class A), ‘doubtful’(Class B) and ‘suspect’(Class C)
depending on the number of homogeneity tests rejecting the
null hypothesis. When none or one of the four tests rejects
the null hypothesis, the homogeneity status is classified as
Class A, such data can directly be used for further analysis.
When any two of the four tests reject the null hypothesis, the
homogeneity status of the time series is classified as Class B,
suchtime series data have inhomogeneous signal and should
be critically inspected before using for further analysis. When
three or all of the four tests reject the null hypothesis, the
homogeneity status of the time series is classified as Class C,
such data cannot be used in further analysis before necessary
corrections (Wijngaard er al. 2003, AL-Lami et al. 2014,
Chang & Ghani 2017, Elzeiny et al. 2019a).

The NetCDF data files of Global Precipitation Climatology
Centre Full Data Reanalysis (GPCC_FD) version Total Full
V2018 (0.5x0.5) and the Climate Research Units (CRU) Ts
version 4.01, were obtained from online- archives (https://
data.ceda.ac.uk for the CRU dataset and https://www.esrl.
noaa.gov for GPCC dataset). These versions of both datasets
provide global monthly precipitation data at a 0.5° by 0.5°
spatial resolution for the period 1901 to 2016. The CRU
dataset also provides data for other climate variables such as
air temperature and potential evapotranspiration (Schneider ez
al. 2015, Jones 2017).

There are two approaches to compare grid data with station
observations: Grid to grid or point to point comparison. For
grid to grid comparison, point data from weather stations need
to be converted to grid data for the required grid size. For point
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to point comparison, the grid data need to be interpolated to
a location of the point data (Ahmed ez al. 2019). One method
cannot inherently be consider as more accurate than the other.
The suitable method depends the specific application and the
purpose as both have strength and weakness. A point-to-point
comparisons provide a direct, location-specific comparison of
values, because of this it is ideal for validating the accuracy
of gridded data against particular ground truth locations. A
grid-to-grid comparison is suitable for large-scale analysis.
However, the density and quality of the station data used to
build the grid have a significant impact on its accuracy. In
our case, there are limited weather stations over the study
area with reliable and long term data within 0.5 degree
grid. The performance of the gridded dataset are, thus, to be
evaluated,against data over these locations. For these reasons,
point to point comparison was applied in this study.

The monthly rainfall data were extracted from the
respective NetCDF files of the two gridded datasets for four
grid points surrounding each of the weather station. In order
to get point data from the grid data, the grid data over the four
grid point surrounding each weather station were interpolated
to locations corresponding to the weather stations using
Inverse distance weighted average (IDWA) interpolation
method (power of 2).This interpolation method and parameter
(power of 2) have been used for rainfall interpolation for a
study in the Awash River basin (Getahun et al. 2021).To
assess the strength of relationship between observed and grid
data, the Pearson correlation coefficient were computed for
the entire monthly data series. The correlation coefficient is
widely used in similar studies to assess the level relationship
between two datasets (Dinku et al. 2008, 2014, Asfaw et al.
2018, Gebrechorkos er al. 2018). Several statistical error
and bias estimatorssuch as Mean Bias Errors (MBE), Mean
Absolute Error (MAE), Modified Index of Agreement,
androot mean square error, and relative efficiency have
been used in similar studies (Dinku ez al. 2008, 2014, Asfaw
et al. 2018, Gebrechorkos et al. 2018, Ahmed et al. 2019).

These estimators are similar in that they all are related to the
magnitude of deviations between values of observed and grid
data in different ways. The root mean square error (RMSE).
RMSE offers a single, comprehensible measure of prediction
error in the same units as the target variable, it is a popular and
useful estimator for assessing the accuracy of gridded data.
The probability distribution of the observed and gridded data
were compared using different goodness-of-fit tests; the two
most widely used test include Anderson—Darling (AD) testand
Kolmogorov Smirnov (KS) test (Asfaw et al. 2018, Ahmed et
al. 2019, Navidi Nassaj et al. 2022). The AD test estimates
the deviation between distributions, but it places greater
emphasis to the tail of the distributions. Because of this, it is
especially useful for analysis of extreme values such as heavy
rainfall. Kolmogorov Smirnov (KS) test is non parametric
test based on estimation of the maximum difference between
the cumulative probability distributions functions (CPDs) of
two datasets. This test is sensitive to maximum difference
near the center of the probability distributions.In this study,
Kolmogorov Smirnov (KS) test was applied to assess the
similarity in probability distribution of the observed and
gridded data.In addition to statistical methods, graphical
methods are also widely used in similar studied. Thus, the
graphical methods such as scatter plots, box plots, and Taylor
diagram were also used in this study for graphical comparison.

The R-Statistical Software was intensively used in this
study for different purposes. It was used to extract the
data from NetCDF by applying Rscript codes prepared
by Uddameri(2017) , for filling missing data using linear
interpolation using the ‘ImputeTS’ package (Moritz 2019),
for IDWA interpolation using the ‘gstat’ package (Pebesma
& Graeler 2020) , for homogeneity test using the ‘Trend
package’ (Pohlert 2018), and for correlation, KS test, RMSE
using the ‘Stat4’ package (R Core Team 2018). While the
Geographic Information System (GIS) software was used for
creating shapefiles, grid making, and mapping.
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Figure 1. Major River Basins in Ethiopia and the Awash River Basin and its sub-basins.
Figures 1 is based on GIS files from the Ministry of Water Resources of Ethiopia



Mulugeta et al. - Performance comparison of Climate Research Units and Global Precipitation Climatology Centre data sets

29

over the Awash River Basin, Ethiopia

38°0'0"E 40°0'0"E 42°0'0"E
N W W W W W W EE N NN NN NN BN BN NN BN BN BN BN BN BN BN N N W BN BN O B B W B S O
i
"
"
"
|
|
"
12°0'0"N : ',/2-».: ' . 12°0"0"N
o iinka L T —
L] gism ® b
: ) S
" r~2> Bati |
1 1 O JAwashArba ! )
" P - _a \/ -
| P
o A 4 g
' '\\&.Mn)nh _Aysha \\._
: .N\"m.l R .Gl\uno \\
10°0°0"N & iy - 0 Fadis 10°0'0"N
1
f g Dire Dawa 4
n p °® ) _
n ¢ L e
: a L T ;anh Gebeya ."’qu_tr
o J) S Addis Abeba _J/’
" { Metehara  moroo
" o  Debrezeit b e
o <
n h Wﬂi /
L] iy © Melkassa 4
n l\ - - [
: - o /’J Oy Ty
8°0'0"N | \ 8°0°0"N
.
|
"
"
"
"
|
"
"
|
[
i Legend
6°0'0"N : . Weather_stations ? ) 5IO ) 1?0 L . 2?0 Kilometers 6°0°0"N
: Awash River Basin
X
|
[l

38°0°0"E 40°0'0"E

42°0'0"E

Figure 2. Selected 23 weather stations in the Awash River Basin.
Figures 2. is based on GIS files from the Ministry of Water Resources of Ethiopia and the coordinates of the stations are taken from the
website of the National Metrological Agency of Ethiopia: (http://www.ethiomet.gov.et).

RESULTS AND DISCUSSIONS
Estimated percentage missing data

From 23 weather stations under consideration (Fig. 2),
ten stations (Tab.1)with the least percentage missing data and
relatively longer data records were selected. Stations with
data length of 30 years and missing data less than 10% were
originally targeted. However, as the number of station meeting
the criteria dropped significantly, stations with missing data
around 15% were included. The selected weather stations and
the respective estimated percentage of missing data are shown
in Table 1.

Homogeneity tests

The standard normal homogeneity test (Tab. 2) shows that
the monthly rainfall time series are homogenous (o= 0.05)
for all months across 6 stations (Adama, Addis Ababa, Dire
Dawa, Metahara, MehalMeda, and wonji) and for most of
the months across the remaining 4 stations. According to this
test, around 91% of monthly time series across the selected
stations are homogenous (a= 0.05).

The Buishand range test (Tab. 3) shows that the monthly
rainfall time series are homogenous (o= 0.05) for all months
across 6 stations (Adama, Addis Ababa, Melkasa, Metahara,
Mezezo, and Wonji) and for most of the months across the

other 4 stations. According to this test, around 95% of monthly
time series across the selected stations are homogenous (o=
0.05).

The Pettitt test (Tab. 4) shows that the monthly rainfall
time series are homogenous (o= 0.05) for all months across
6 stations (Adama, Addis Ababa, Debrezeit, Mezezo,
MehalMeda, and Wonji) and for most of the months across
the other 4 stations. According to the Pettitt test, around 95
% of monthly time series are across the selected stations
homogenous (o= 0.05).

The Von Neumann ratio test (Tab. 5) shows that the
monthly rainfall time series are homogenous (a= 0.05) for all
months across 4 stations (Addis Ababa, Debrezeit, Metahara,
MehalMeda) and for most of the months across the remaining
6 stations. According to this test, around 90 % of monthly
time series across the selected stations are homogenous (0=
0.05).

The results show thatabout 94% the tests (112 out of 120)
are rejected byone or none of the four tests. These monthly
time series data can be classified as Class A, indicating that
the data issuitable for further analysis. The tests for 5.8%
of the tests (7 out of 120) are rejected by two of the four
tests. The data can be classified as Class B, indicating that
thehomogeneity of this data is questionable. The tests for a
single monthly time series for February at Majete station (less
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than 1 %) is rejected by three of the four tests, the data can be
classified as Class C, indicating that the data is spurious and
cannot used for some analysis such as trend analysis. This
means 94 % of the time series data are homogenous while
around 6% of them have some signal of inhomogeneity. It is
well known that inhomogeneity in data is potentially attributed
to non-climatic factors such as relocation of weather stations,
changes in measuring instruments, significant change in
site surrounding condition, and alterations in observation
procedures. The surrounding areas of the stations in Dire
Dawa and Melkasa are known to have changed much due to
increased urbanization around the stations which were known
to be in the outskirt of the city area in old times. The station
at Majate might have potentially also experienced similar
change of surrounding area or update of instrumentation
due to the fact that the station is among the oldest stations in
Ethiopia.

Homogeneity testsfor monthly rainfall time series for
locations in the Awash river Basinshave recently been
investigated by a couple of studies. Similar to this study,
Daba et al. and Getahun et al. (2021) employed the four
tests (standar normal homogeneity test (SNHT), the Buishand
range test, Pettitt test, and the Von Neumann ratio test), and
classified the time series as class A, B, and C. Daba et al.
(2020) assessed homogeneity of monthly as well asannual
rainfall time series for stations in the upper Awash river basin.
They have not indicated the percentage of time series in
each classes, however, from the number of time series they
provided the parentage of time series in each class can be
estimated.

Accordingly, about 65.2% of the monthly time series are
of class A, about 32.4% of the monthly time series are ofclass
B, and about 2.3% of the monthly time series are of class C.
Similarly, Getahun et al. (2021) assessed the homogeneity
of basin- average monthly rainfall time series for Awash
river basin to identify change detection periods. They found
monthly time series of all months except for February and
April are of class A. The time series for the month of February
is found as of class C and that of April is found as class of B.
Accordingly, more than 83% of the time series in this study
are of class A. Some other studies have also investigated the
homogeneity for annual rainfall time series for locations in
Awash river basin (Adane et al. 2020, Edris et al. 2021).
Edris et al. (2021) used all the four methodsused in this study
while Adane ef al. (2020) used double mass curve for the

homogeneity testing. Edris et al. (2021) found that the annual
rainfall times series are homogenous for 90% of the stations.
It is clear that homogeneity is easier to achieve for annual
time series than monthly time series data.Direct comparison
of the results may be difficult due to difference data length,
location, methods used, and spatial extent of analysis.
However, generally the finding for monthly time series in
this study showed higher level of homogeneity.The results
imply that the monthly rainfall data for the selected weather
stations in the Awash River Basin have not been significantly
affected by artificial factors such as dislocation of weather
stations, change in measurement instruments, procedure,
and calibration and maintenance of the measuring devices.
Therefore, the data from selected weather stations can be
used as reference to assess the performance derived gridded
datasets.

Correlation analysis

The entire monthly rainfall data from the gridded datasets
were compared with observation data at the selected weather
stations. The results of Pearson correlation (Tab. 6) show that
rainfall data extracted from both the CRU and the GPCC
datasets are generally significantly and highly correlated
with the corresponding observation data. The GPCC showed
higher correlation with observed data than the CRU for all
stations except at Adama. Still, on average, the GPCC showed
higher correlation coefficient than that of the CRU. The scatter
plots of observed data versus datasets in Figure 3 shows that
data from both the CRU and the GPCC datasets are not only
highly and positively correlated to the observed data but also
more closely and linearly follow the trend of the observed
data. However, data from the GPCC dataset shows stronger
positive correlation (R* = 0.94 for GPCC) with observed data
than the CRU (with R? = 0.88 for CRU) (Fig. 4). In addition,
the GPCC data follows the trend of the observed datamore
closely with smaller number of outliers than that of the CRU.
The box plot in Figure 5 shows the median value of the
correlation coefficient for the GPCC is higher and with range
smaller variability than that of the CRU.Overall, the GPCC
dataset shows higher level of association with observed data
than that of the CRU dataset.

Dinku et al. (2008) found an average correlation
coefficients of 0.95 between observed rainfall data and
GPCC-full and that of 0.90 between observed rainfall data
and CRU for locations in the central Ethiopian highlands.

Table 1. Selected weather stations and estimated percentage missing data.

SN Gauge Station Latitude N Longitude E Data Period Missing Data %
1 | Addis Ababa 9.02 38.50 2015-1960 2.6
2 | DebreZeit 8.72 39.00 2013-1960 13.1
3 | Dire Dawa 9.60 41.85 2015-1960 2.1
4 | MehalMeda 10.23 39.68 2015-1974 13.1
5 | Melkasa 8.40 39.33 2013-1977 0.67
6 | Metahara 8.86 39.92 2015-1984 72
7 | Mezezo 9.97 39.97 2015-1986 16.4
8 | Adama 8.55 39.28 2015-1980 14.3
9 | Majete 10.45 39.85 1988-2015 8.3
10 | Wonji 8.48 39.25 1960-2015 10.1

(The Coordinates of the stations are taken from the website of the National Metrological Agency of Ethiopia: http://www.ethiomet.gov.et).
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Table 2. Test statistics (T) for SNHT over the gauge stations (* denotes T is statistically significant at 5% significance level).

Months
Stations
Jan Feb | Mar Apr May | Jun Jul Aug Sep Oct Nov Dec
Adama 4.2 39 2.1 |21 4.1 7.0 6.1 6.8 2.9 1.3 3.4 4.4
Addis Ababa 3.2 34 25 |22 1.0 23 3.8 4.1 5.5 1.2 2.3 2.2
Dire Dawa 3.6 6.8 32 |51 1.8 4.1 6.2 7.2 3.1 3.8 7.1 4.0
DebreZeit 1.8 2.9 3.6 |45 3.5 5.6 5.1 10.7* 11.8* 2.1 33 52
Melkasa 12.7% | 3.6 2.1 10.0%* 24 10.4* | 10.4* |3.0 11.9% 15.6* 3.4 2.3
Metahara 2.0 7.6 50 |7.1 5.4 5.4 32 39 7.7 3.0 7.4 1.0
Majete 5.7 14.7*% 3.7 |28 3.9 43 7.01 3.0 3.7 33 2.3 2.4
MehalMeda 1.7 6.0 2.7 139 1.2 1.1 4.8 2.2 6.5 5.2 0.8 1.1
Mezezo 4.2 10.9*% (4.0 |[3.7 8.0% |45 6.7 1.7 3.9 2.4 4.0 2.6
Wonji 2.0 3.2 5.1 |45 5.4 7.3 6.6 34 6.1 1.4 23 3.2

Table 3. Test statistics (R/sqrt (n)) for Buishand range test over the gauge stations (* denotes R/sqrt(n) is statistically significant
at 5% significance level, P-value is less than 0.05).

Months
Stations
Jan Feb Mar Apr May | Jun Jul Aug Sep Oct Nov Dec
Adama 0.9 1.3 0.9 1.0 1.4 1.3 1.3 1.2 1.1 1.1 1.0 0.9
Addis Ababa 1.1 1.3 0.7 0.9 0.8 09 (09 1.2 1.0 1.0 1.1 1.0
Dire Dawa 1.4 1.5 1.1 1.6* 1.0 1.2 1.8% 1.3 1.1 1.1 1.2 1.2
DebreZeit 0.9 1.1 0.8 1.3 1.2 1.0 1.3 1.5 1.7* 1.0 0.9 1.6*
Melkasa 1.3 0.9 1.1 1.0 1.1 1.2 |09 0.8 1.5 1.2 1.2 1.1
Metahara 0.9 1.4 1.3 1.2 1.2 0.9 1.0 1.1 1.4 1.0 1.2 0.8
Majete 1.2 1.6* 1.1 0.8 0.8 1.3 1.4 1.0 0.8 1.1 0.9 0.9
MehalMeda 0.9 1.5 1.0 0.9 0.8 0.6 1.7* 0.9 0.8 0.9 0.8 1.0
Mezezo 1.1 1.5 1.0 0.8 1.3 1.3 1.3 1.0 1.1 1.2 1.1 1.1
Wonji 1.0 1.3 1.4 1.0 1.0 0.9 1.0 0.9 1.4 1.0 1.2 1.3

Table. 4 Test statistics (U*) for Pettitt test over the gauge stations (* denotes U* is statistically significant at 5% significance
level, P-value is less than 0.05).

Months
Stations
Jan Feb Mar Apr May | Jun Jul Aug Sep Oct Nov Dec
Adama 232 291 129 139 227 254 | 279 157 204 124 267 171
Addis Ababa 173 226 160 140 120 162 | 176 144 246 94 180 198
Dire Dawa 206 292 263 | 257 176 218 | *337 | 169 166 246 197 250
DebreZeit 179 99 119 151 186 196 | 202 266 258 124 139 111
Melkasa 80 117 90 117 80 80 106 101 *176 86 151 59
Metahara 57 *136 100 | *138 84 50 46 70 98 66 144 52
Majete 91 *114 70 44 58 54 108 62 70 46 98 54
MehalMeda 99 171 84 134 59 127 | 206 72 76 88 125 73
Mezezo 65 102 84 58 70 80 82 48 52 68 103 54
Wonji 139 178 255 | 204 144 184 | 141 208 196 160 249 125
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Table 5. Test statistics (RVN) for Von Neumann ratio test over the gauge stations (* denotes RVN is statistically significant at

5% significance level, P-value is less than 0.05).

Stations Months
Jan Feb Mar Apr May | Jun Jul Aug Sep Oct Nov Dec
Adama 1.7 1.8 2.1 2.0 23 2.1 1.7 1.8 23 1.9 *1.5 2.1
Addis Ababa 1.8 2.1 1.9 2.3 24 2.1 1.9 1.9 2.3 1.6 1.9 2.0
Dire Dawa 22 1.8 1.6 *1.5 1.7 1.9 1.9 1.9 1.9 2.0 22 2.0
DebreZeit 1.6 2.6 1.8 1.8 1.9 1.8 1.6 1.7 2.3 1.8 1.7 2.0
Melkasa 1.8 22 2.0 1.6 2.0 22 2.1 22 1.8 *14 |19 1.8
Metahara 2.0 1.7 1.9 1.7 2.1 2.8 2.5 2.0 2.0 1.5 1.8 2.0
Majete *14 |15 1.9 2.6 25 *1.3 | *13 *1.4 2.0 1.7 1.9 2.1
MehalMeda 1.8 1.6 2.0 2.0 2.5 2.3 1.5 2.1 2.3 1.6 1.9 23
Mezezo 1.9 *1.3 2.1 24 1.9 *¥1.2 | 1.2 1.5 1.9 1.9 1.8 24
Wonji 1.7 2.0 1.7 *1.5 1.7 2.0 2.1 22 1.8 1.9 2.0 1.6

The average correlation found by this study is higher than
that of our study. In this study, data from large number of
stations across central Ethiopian highlands are included. It
is not clearly indicated in the study as to which locationsin
the Awash River basin are also included. In addition, the
data periods are quite different. These conditions might have
caused difference in the findings. Yet, the finding by Dinku
et al. (2008) is in agreement with that of our study in that
there strong correlation between observed rainfall data and
corresponding data from the CRU and the GPCC datasets
and the correlation coefficient for the GPCC is higher than
that of the CRU. For locations in northcentral Ethiopia, not
in Awash river basin, Asfaw et al. (2018) found that data
from GPCC are significantly and strongly correlated with
station data (r=0.72, p<.001) whereas they found that
data from CRU dataset are not significantly correlated with
observed data (r=0.27, p > 0.1). The correlation coefficients
for both GPCC and CRU of this study are lower than that
ofcorresponding values in our study. Asfaw et al. (2018)
studied locations in different basin, this among other factors
clearly affect the possibility of getting comparable results.
Yet, the findingis partly agreement with that of our study in
that there strong correlation between observed rainfall data
and corresponding GPCC.

Root mean square error

The root mean square error (RMSE) estimated are shown
in Table 7 and Table 8. For the CRU dataset, the mean monthly
RMSE over the stations varies from 21.3mm in November
to 90 mm in July. For the GPCC dataset, the mean monthly
RMSE over the stations varies from 20.6mm in December to
77.2 mm in August. The mean and median monthly RMSE for
the CRU dataset are higher than that of the GPCC dataset for
all months except for November (Tab. 7 and §, Bar plot in Fig.
5, and Box plot in Fig. 6).

The annual RMSE over the stations for CRU dataset
varies from 515.8mm at Dire Dawa to 1247.3 mm at Mezezo.
The annual RMSE over the stations for GPCC datasets varies
from 248.8mm at Addis Ababa to 1192.9 mm at Mezezo. The
annual RMSE for the CRU dataset are higher than that of the
GPCC dataset for all station except at Addis Ababa (Table
7 and 8). The annual mean RMSE for CRU dataset 728mm
is far higher than annual mean RMSE for GPCCC dataset
541.57mm. Clearly, the monthly and annual RMSE values

are generally higher for the CRU dataset than that of GPCC
dataset. The GPCC dataset is more close to the observation
data than that of the CRU dataset.

Looking at Figure 5 and 6, it can be noted that the root
mean square errors for both CRU and GPCC datasets are
highest for summer months (June to September, the main
rainy season) followed by the spring months (February to
May, the small rain season). The errors are the least for the
winter months (October to January, the dry season). Studied
show that high rainfall variability and high rate of rainfall in
a season reduces the ability of rainfall product to predict the
rainfall (Haile et al. 2010, Mekonnen et al. 2021, Asfaw et al.
2023, Li & Shao 2025). The RMSE can be normally higher
for rainy season either due to high rainfall variability and/or
more frequent heavy rainfall events in rainy season, which are
typically more difficult to predict accurately.

In Ethiopia and in Awash River basin the variability of
rainfall is generally higher in the dry season than in rainy
season. Thus, the most likely reason for higher RMSE in
rainy season than the dry season would be related to more
frequent heavy rainfall events in rainy season. The monthly
and annual Root mean square error (RMSE) is exceptionally
highest at Mezezo which is also the gauge location with
highest missing data. The lowest annual and monthly RMSE
are found at Dire Dawa and Addis Ababa and where the
missing data are also the lowest (Tab. 1). This implies the
errors are highly associated with data quality at the weather
stations. This indicates the performance of derived gauge
data (GPCC and CRU) is markedly being influenced by the
interpolation techniques employed to replace missing data
during development of the gridded datasets.

None of the two related local studies, by Dinku ef al. (2008)
and by Asfaw et al. (2018), which compared GPCC and CRU,
used mean root mean square for comparison. However, Dinku
et al. (2008) used mean error (ME), and mean absolute error
(MAE). They found that GPCC-full showed lower error than the
CRU. Similar to the local studies, a study in Pakistan by Ahmed
et al. (2019) did not use mean root mean square for comparison.
Based on the Mean Bias Errors (MBE) and Mean Absolute
Error (MAE), they found mixed results for different regions and
months, but overall the GPCC dataset showed lowest error and
bias than the CRU dataset. The results of the previous studiesare
generally in agreement with the results of this study.
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Figure 3. The scatter plots of monthly rainfall, observed versus gridded datasets at Addis Ababa for the period 1960-2015.
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Figure 4. Comparison of the box plots for Pearson correlation coefficient (CC) for the CRU and GPCC datasets.
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Figure 5. Bar plot for spatial mean of the root mean square error (RMSE) across elected stations for the CRU and GPCC datasets.
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Figure 6. Box plots for monthly root mean square error (RMSE) across selected stations for the CRU and GPCC datasets.

Table 6. Pearson correlation coefficient (CC) between gauge and grid data.

Stations CRU dataset p-value GPCC dataset p-value
Adama/Nazert 0.68 0.00E+00 0.63 0.00E+00
Addis Ababa 0.94 1.70E-170 0.97 2.11E-187
DebreZeit 0.86 2.99E-204 0.84 2.01E-194
Dire Dawa 0.86 7.89E-179 0.87 1.11E-97
Majete 0.86 4.06E-141 0.87 3.03E-116
MehalMeda 0.77 1.12E-115 0.90 2.52E-77
Melkasa 0.84 7.45E-86 0.88 9.30E-79
Metahara 0.78 7.79E-48 0.87 2.65E-58
Mezezo 0.80 6.59E-101 0.82 4.27E-96
Wonji 0.82 2.99E-204 0.87 1.34E-161
Mean 0.82 0.85

Note: The p-Value for both datasets and all stations are by far less than 0.05 and 0.01, indicating there is 99% confidencethat calculated
correlation values are not because of random errors.

Table 7. Root mean square error (mm/month or year) for CRU datasets against gauge data.

Stations Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec | Annual
Adama 333 51.8 55.0 58.9 65.0 60.4 129.2 | 104.8 | 582 |60.7 30.5 [20.2 728
Addis Ababa 12.6 16.9 30.1 38.0 34.8 39.8 69.0 |60.3 459 |25.6 11.7 | 16.5 401.2
Dire Dawa 17.5 29.1 354 46.8 45.1 21.0 30.1 | 28.8 349 352 179 | 179 359.7
DebreZeit 19.2 37.8 524 38.6 47.8 42.9 68.0 |67.2 489 432 27.7 221 515.8
Melkasa 23.1 223 31.0 36.6 49.8 39.2 679 |[53.6 33.7 |31.2 23.1 |272 438.7
Metahara 232 24.0 32.0 51.2 75.1 41.2 584 | 79.1 52.7 | 434 13.7 | 154 509.4
Majete 29.2 29.6 40.2 44.6 60.2 73.1 952 | 1264 |60.1 |63.7 50.6 |54.3 727.2
MehalMeda 29.9 29.9 514 65.9 74.2 45.0 140.6 | 91.5 81.0 |[583 39.9 1403 747.9
Mezezo 72.5 56.7 68.2 80.2 74.4 56.5 240.8 | 2363 | 116.8 | 105.0 [59.2 |80.7 1247.3
Wonji 28.7 38.0 393 39.8 40.2 444 1928 |653 423 |27.8 16.8 | 16.1 491.5
Mean 28.9 33.6 43.5 50.0 56.7 464 992 |913 57.5 |49.4 29.1 |31.1 728
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Table 8. Root mean square error (mm/month or year) for GPCC datasets against gauge data.

Months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec | Annual
Adama 32.1 52.1 |60.9 |56.1 |60.5 555 | 1349 [100.5 |[53.7 61.5 323 224 7225
Addis Ababa 7.8 132 |23.1 27.7 1202 25.6 |40.7 323 24.7 11.7 13.9 7.9 248.8
Dire Dawa 17.5 29.1 |354 |46.8 |45.1 21.0 |30.1 28.8 349 35.2 17.9 17.9 |359.7
DebreZeit 17.5 388 149.7 [394 |415 40.7 | 683 65.0 37.1 40.7 24.1 24.1 |486.9
Melkasa 12.1 262 292 369 |36.0 33.6 |77.9 50.9 33.0 317 25.4 25.3 | 4182
Metahara 15.3 103|242 |368 |295 325 394 51.5 35.8 38.5 17.9 114 |343.1
Majete 28.2 21.5 |42.0 |46.8 |51.0 71.1 |532 111.5 64.9 53.5 48.3 48.2 | 640.2
MehalMeda 25.1 255 |382 |38.6 |37.6 326 |98.2 923 56.9 44.6 40.8 41.0 | 5714
Mezezo 77.7 464 |669 |827 |[855 584 |204.8 |226.6 118.1 92.7 56.2 76.9 | 1192.9
Wonji 24.4 382 |40.0 |38.6 |31.7 359 |78.6 54.6 37.0 23.1 17.4 12.5 |432
Mean 25.8 30.1 [41.0 |[45.0 |438 40.7 |82.6 81.4 49.6 433 29.4 28.8 | 541.57

The Kolmogorov-Smirnov test

The similarity in probability distributions of the observed
data and data from the two gridded datasets were tested by the
Kolmogorov-Smirnov (KS) test. The results of the KS test (Tab.
9 and 10) releveled that among 120 monthly time series from
each of the dataset (CRU and GPCC), only 28.8% of the time
series for the CRU and 33.3% for the GPCC dataset showed
similar probability distribution with gauge data (o = 0.05). The
remaining monthly time series (71.2% for the CRU and 66% for
the GPCC) for the two datasets failed (a.= 0.05) to show similar
probability distribution with respective gauge data.

Looking at the previous studies in Ethiopia, Dinku et
al. (2008) did not compare the probability distribution of
gridded dataset with the observation data. While Asfaw et al.
(2018) compared GPCC and CRU probability distribution
of data from the datasets and the observation station using
Kolmogorov-Smirnov test. Asfaw ef al. (2018) found that
the data from GPCC dataset followed probability distribution
of an average gauge data but that of CRU dataset failed to
follow probability distribution of an average of gauge data
over the locations in the northern central Ethiopia. The studies
have not shown the results for each month. Similar study in
Pakistan by Ahmed ef al.(2019) found different results for the
CRU and GPCC across climatic regions—semi-arid, arid, and
hyper arid areas. They found that GPCC dataset replicated
similar probability distributions with gauge data for 9, 7, and 9
months for semi-arid, arid, and hyper arid areas, respectively.
Whereas the CRU dataset replicated similar probability
distributions with gauge data for 6, 10, and 0 months for
semi-arid, arid, and hyper arid areas, respectively.In semi-arid
and hyper region, the GPCC dataset showed similarity with
observed data for more number of months than that of the
CRU dataset. While in arid region, the CRU dataset showed
similarity with observed data for more number of months than
that of the GPCC dataset. They found similar distributions
between the datasets and gauge data in most of the months
(for 25 out of 36 months for GPCC and 16 out 36 months for
the CRU). This is in contradiction to the result of this study.
Overall, the GPCC showed similarity with observed data for
higher number of months than that of the CRU. This is in
agreement with the result of this study.

The difference in the results of this study and previous
studies are potentially attributed to the difference in density

of weather stations and the quality of data from observation
stations in the study areas. The difference in the versions of
datasets and the method of analysis used in the studies would
also have influence on the results.

The failure in the CRU and GPCC datasets in this study to
replicate similar probability distribution with observed data
for large majority of monthly time series could be attributed
to inherent uncertainties in the gridded or observation data.
On one hand, there are inherent uncertainties in the gauge
based gridded datasets mainly associated with the density of
gauge stations, quality of gauge data, and the interpolation
techniques used during construction of the datasets. As a
result, the capability of gridded data to replicate spatial and
temporal climate variability might be limited (Nashwan ez al.
2019, Tozer et al. 2012). However, the uncertainties associated
with random and systemic errors in gridded datasets are often
fairly low (Dinku et al. 2008). On the other hand, the quality
of observation data used would affect the KS test.

In summary, the Pearson correlation coefficients, root
mean square errors, and KS test (o = 0.1) in this study showed
that the GPCC dataset has better performance than the CRU
dataset. Taylor diagram (Fig. 7) also illustrates that GPCC
dataset performs better than CRU dataset. With respect to
the similarity of the probability distribution of the dataset
with observed that GPCC dataset showed similar probability
distribution with observed data for more number of time
series than that of the CRU dataset. In agreement with that,
castern African regional study by Dinku ef al. (2008) reported
that the GPCC showed best statistics best overall statistics
over the CRU dataset. A number of other studies in different
regions across the worldalso reported that the GPCC dataset
performs better than the CRU dataset (Nashwan et al. 2019,
Ahmed et al. 2019, Hu et al. 2018, Faiz et al. 2018). The
relative higher performance of the GPCC dataset might have
be owning to the fact that the GPCC dataset is derived based
on ground observation data from much larger number of the
weather stations (85,000) across the world compared to that of
the CRU (4000). Furthermore, the highest RMSE for location
with large missing data and the lowest RMSE at locations
with lowest missing data indicate how significantly the data
quality from observation station affect the performance of the
derived climate products.
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Figure 7. Taylor Diagram to compare the two datasets against observed data based on Centered Root Mean Square Error (RMSE),
Correlation Coefficient, and Standard Deviation at Addis Ababa for the entire monthly data (1960-2015).

Table 9. Kolmogorov-Smirnov (KS) test statistics (D) for monthly time series from gauge and CRU dataset.

Months Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Adama *0.25 | *0.25 0.22 **0.27 | ¥*0.26 | **0.27 | *0.23 *0.23 *¥*0.27 | ¥*%0.27 | ¥*0.27 | ¥*0.38
Addis Ababa | **0.29 | 0.19 0.14 0.08 0.16 **0.31 | ¥*0.31 | **0.28 *¥*0.29 | **%0.26 | **0.44 | **0.48
Dire Dawa **0.39 | 0.20 0.13 0.09 *0.24 | **%0.34 | ¥*0.26 | *0.25 *0.25 *¥*0.29 | ¥*0.32 | *¥*0.41
DebreZeit **0.40 | **0.36 | *0.25 *0.24 **0.30 | *0.26 0.22 0.20 **0.27 | ¥*%0.32 | ¥*0.38 | **0.54
Melkasa *0.27 | 0.24 0.21 **0.35 10.25 0.20 0.20 0.26 0.22 0.23 **0.32 10.23
Metahara **0.42 | **0.35 | 0.20 **0.48 | *¥*0.49 | **0.58 | **0.37 | **0.57 **0.68 | ¥*%0.43 | **0.31 | **0.37
Majete *0.29 |0.25 0.22 **0.33 |0.22 0.24 **0.40 | *¥*0.50 | **%0.33 | 0.21 0.23 *0.31
MehalMeda | ¥*0.32 | 0.21 0.21 *¥*0.45 | ¥*0.45 | **0.38 | **0.28 | 0.16 **0.68 | ¥*%0.42 | **¥0.45 | **0.39
Mezezo **0.47 | ¥*0.33 | ¥**0.38 | **0.50 | 0.16 *¥*0.36 | ¥*0.80 | *¥*0.84 | ¥*0.64 | **0.40 | **0.32 | **0.46
Wonji **0.32 | **0.40 | 0.16 **0.32 | 0.14 **0.32 | **0.26 | 0.25 0.25 **0.26 | **0.26 | **0.37
Key: * and ** denote D is statistically significant at 10 % and 5% significance level, respectively.
Table 10. Kolmogorov-Smirnov (KS) test statistics (D) for monthly time series from gauge and GPCC dataset.
Months Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Adama **0.41 | **0.34 | *0.23 | ¥*0.32 | **0.28 | **0.34 | **0.31 | **0.32 | *0.23 | **0.39 | **0.43 | **0.55
Addis Ababa *¥%036 | *¥*0.27 |0.12 0.12 0.13 0.18 0.21 0.13 0.11 0.19 **0.51 | **0.55
Dire Dawa *%0.39 | 0.20 0.13 0.09 0.24 **0.34 | ¥*%0.26 | *0.25 *0.25 | *¥*0.29 | ¥*0.32 | *¥*0.41
DebreZeit **0.51 | **0.41 | *0.25 | *0.24 |0.18 0.15 0.17 0.18 0.20 0.27 **0.47 | **0.60
Melkasa **0.41 | **0.33 |0.23 **0.34 | **%0.33 | **0.31 | 0.25 0.19 **0.31 | **0.30 | **0.47 | **0.38
Metahara *¥*0.49 | **0.42 | 0.25 *¥*0.52 | ¥*%0.40 | **0.45 | *0.30 *¥*0.46 | ¥*0.54 | *¥*0.51 | ¥*0.39 | *¥*0.51
Majete 0.26 **0.32 | 0.18 *0.31 | 0.24 0.14 0.20 **0.36 | **0.40 | 0.24 0.27 **0.38
MehalMeda **0.30 | 0.20 0.12 0.23 **0.29 10.25 0.19 *¥*0.30 | ¥*0.41 | **0.30 | **0.46 | **0.42
Mezezo **0.52 1 0.27 **0.34 | **0.42 | 0.18 **0.47 | ¥*0.68 | ¥*0.70 | **0.59 | **0.36 | 0.22 **0.41
Wonji **0.44 | **0.47 | 0.25 **0.33 | 0.18 **0.33 | 0.16 **0.30 | **0.32 | ¥**0.28 | ¥**0.39 | **0.53

Key: * and ** denote D is statistically significant at 10 % and 5% significance level, respectively.
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CONCLUSIONS

The monthly rainfall time series data from selected
weather stations are dominantly (94%) homogenous across
the selected stations at a significance level 0=0.05. Rainfall
data extracted from both the CRU and the GPCC datasets were
significantly, and highly, correlated with the corresponding
observation data from all weather stations. The GPCC
dataset showed generally higher correlations with gauge data
(CC=0.85 for monthly time series) and lower errors (with
averaged RMSE=45 mm/month) than that of the CRU dataset
(CC=0.82 for monthly time series, with averaged RMSE over
location =51 mm/mm). Yet, majority of the monthly rainfall
data from both the CRU and GPCC datasets (71.2% for the
CRU and 66% for the GPCC) failed to follow probability
distribution with observation data.Still, it is clear that the
GPCC dataset showed similar probability distribution with
observed data for more number of time series than that of the
CRU dataset. All graphical analysis also showed that GPCC
dataset aligns more closely with gauge data than of the CRU.
Overall, the GPCC dataset has showed better performance
than the CRU dataset to simulate rainfall for the Awash River
Basin. Thus, the GPCC dataset can be used as better alternative
source of rainfall data for hydrological analysis and modelling
required in the planning and design of water infrastructure,
management of water resources, and climate and hydrological
studies in the basin, especially for ungauged and data-scarce
areas of the river basin.Further studies are crucial to identify
datasets that can perform better across locations and seasons
in reducing errors and bias and in replicating the probability
distribution of observation data.
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